GENERAL REQUIREMENTS STRUCTURAL LOAD CALCULATIONS

Engineers Design Group inc.	Project				Job Ref.2019-091	
	MSBA Design Development Submission				Sheet no./rev	1
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Project Name:

Northeast Metropolitan Regional Vocational High School

MSBA Module 6 Requirements:

MSBA Design Development - Structural Loading Calculations

Prepared For:
Drummey Rosane Anderson, Inc.

Prepared By:
Alexander Auditore, B.S.E. - Engineers Design Group, Inc.

Checked By:
Mehul Dhruv, P.E. - Engineers Design Group, Inc.

Engineers Design Grouplic.	Project \quad Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.2	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Table of Contents

Project Synopsis 3
Design Codes 4
Geotechnical Recommendations for Foundation Analysis and Design 4
Project Materials and Strengths 4
Dead and Live Loading Criteria 5
Snow Loading Criteria 6
Wind Loading Criteria 7
Seismic Loading Calculations 16
Sample Gravity Analysis and Design Calculations 19

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.3	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Project Synopsis

The project is located in Wakefield, Massachusetts. The main building to be constructed consists of a four-story vocational high school near the existing Northeast Metropolitan Regional Vocational High School. The main building is comprised of four wings, named Areas A - D on the project documents. Areas A consists of the cafeteria/kitchen and acedemic rooms, Area B is the main acedemic wing, Area C holds the auditorium, and Area D the gymnasium. Additional buildings to be constructed consist of a two-story locker building, a single story concessions building, and a single story pre-engineered maintainance garage building.

The majority of the structure will be steel-framed, supported by reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. Each wing has a mezzanine level above the ground floor level that shall be constructed using precast concrete plank, supported by load-bearing concrete-masonry walls and reinforced concrete foundations. All suspsended floor systems above the mezzanine levels will be constructed as a light-weight concrete slab on steel deck, supported by structural steel beams and girders. The roof system in Areas A and B will consist of steel deck, supported by steel beams and girders; the main roof system in Areas C and D will consist of steel deck, supported by openweb steel joists.

The main structure's lateral force resisting system shall mainly consist of ordinary concentric steel braced frames, comprised of hollow-structural steel members. Reinforced concrete-masonry shear walls will be used throughout the building as well. The structure will have an expansion joint, separating Areas A and B from Areas C and D. The combined lateral force resisting system will be designed to resist the loads imparted on the structure from local wind and seismic forces per applicable design codes.

The two-story locker building structure will consist of structural steel beams, supported by load-bearing concrete-masonry walls and reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The second floor system will be constructed as a light-weight concrete slab on deck, supported by steel beams and girders. The roof system will consist of steel deck, supported by steel beams and girders.

The single-story concessions building will consist of pre-fabricated wood trusses, supported by load-bearing reinforced masonry walls and reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The roof system will consist of plywood sheathing, spanning over wood trusses and masonry walls on all sides.

The maintainance garage building will consist of a pre-engineered steel frame superstructure, supported on reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The roof system will consist of steel deck, supported by continuous steel ' Z '-shaped purlins, spanning between steel frames.

Engineers Design Grouplac.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.	
	MSBA Design Development Submission				4	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Design Codes

1. Massachusetts State Building Code, $9^{\text {th }}$ Edition
2. International Building Code, 2015 Edition
3. ASCE 7-10: Minimum Design Loads for Buildings and Other Structures
4. ACI 318-14: Building Code Requirements for Structural Concrete
5. ACI 530-13: Building Code Requirements for Masonry Structures
6. AISC 360-10: Specification for Structural Steel Buildings
7. Other codes as required by the design codes listed above

Geotechnical Recommendations for Foundation Analysis and Design

The foundation design for this project shall be done with the recommendations from the soils investigations performed by Lahlaf Geotechnical Consulting, Inc from June, 2021. Their report recommended a maximum net allowable bearing pressure of 4,000 pounds per square-foot to be used for the design of the structure's foundations.

Project Materials and Strengths

Concrete:

Reinforcing Steel:
a. Foundations
4500 psi
b. Slab-on-Grade
4000 psi
c. Composite Slab-on-Steel Deck
4000 psi
d. Exterior Concrete
5000 psi

ASTM A615, Grade 60
ASTM A185 for Welded Wire Reinforcing
Structural Steel:
ASTM A992, Grade 50
Steel Channels:
Steel Plates, Bars, Angles, etc.:
ASTM A36
ASTM A36
Hollow Structural Steel Sections:
ASTM A500, Grade B
Structural Pipes:
ASTM A53, Grade B or ASTM A501
High-Strength Bolts:
ASTM A325-N

Steel Deck:
Concrete-Masonry Units:
Grout:

Mortar:
ASTM A653 (Galvanized Deck)
ASTM C90, Grade N, Type I, 2000 psi
ASTM C476, 2500 psi
ASTM C270, Type S, 1800 psi

Engineers Design Group pac.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.5	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{aligned} & \hline \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Dead and Live Loading Criteria

Design Dead Loads:
Typical Floor Loading on Composite Deck:

$51 / 4 "$ Light-Weight Concrete	42 psf
$2 " \mathrm{x} 20$-Gauge Composite Steel Deck	3 psf
Mechanical/ Electrical/ Plumbing	10 psf
Miscellaneous	5 psf

Typical Roof Loading on Steel Deck:	
$3 " \mathrm{x}$ 20-Gauge Type NS or NSA Steel Deck	3 psf
Roofing and Insulation	7 psf
Mechanical/ Electrical/ Plumbing	10 psf
Photovoltaic Panels	15 psf
Miscellaneous	5 psf
	$\sum \mathbf{3 5} \mathbf{~ p s f}$

Roof Loading on Mechanical Roof Pads:	
$4 "$ Normal-Weight Concrete	67 psf
$3 " x$ 20-Gauge Composite Steel Deck	3 psf
Mechanical/ Electrical/ Plumbing	10 psf

Design Live Loads:

Classrooms with Partitions
Reading Rooms
Corridors (First Floor)
Corridors (Above First Floor)
Lobbies
Assembly/Public Gathering Areas
Stairs
Storage (Light)
Storage (Mechanical Equipment)
Roof (Live)
$40 \mathrm{psf}+15 \mathrm{psf}$ (Reducible)
60 psf (Reducible)
100 psf (Reducible)
80 psf (Reducible)
100 psf (Non-Reducible)
100 psf (Non-Reducible)
100 psf (Non-Reducible)
125 psf (Non-Reducible)
150 psf (Non-Reducible)
20 psf (Non-Reducible)

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev. 6	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{aligned} & \hline \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Snow Loading Criteria

Building details

Roof type;
Width of roof;

Ground snow load

Ground snow load;
Density of snow (Figure 7-1);
Terrain typeSect. 26.7;
Exposure condition (Table 7-2);
Exposure factor (Table 7-2);
Thermal condition (Table 7-3);
Thermal factor (Table 7-3);
Importance category (Table 1.5-1);
Importance factor (Table 1.5-2);
Min snow load for low slope roofs (Sect 7.3.4);
Flat roof snow load (Sect 7.3);

Flat
$\mathrm{b}=\mathbf{6 4 0 . 0 0} \mathrm{ft}$
$\mathrm{P}_{\mathrm{g}}=\mathbf{5 0 . 0 0} \mathrm{lb} / \mathrm{ft}^{2}$
$\gamma=\min \left(0.13 \times \mathrm{P}_{\mathrm{g}} / 1 \mathrm{ft}+14 \mathrm{lb} / \mathrm{ft}^{3}, 30 \mathrm{lb} / \mathrm{ft}^{3}\right)=\mathbf{2 0 . 5 0} \mathrm{lb} / \mathrm{ft}^{3}$
B
Partially exposed
$\mathrm{C}_{\mathrm{e}}=\mathbf{1 . 0 0}$
All
$\mathrm{C}_{\mathrm{t}}=\mathbf{1 . 0 0}$
III
$\mathrm{I}_{\mathrm{s}}=\mathbf{1 . 1 0}$
$\mathrm{P}_{\mathrm{f}_{-} \min }=\mathrm{I}_{\mathrm{s}} \times 20 \mathrm{lb} / \mathrm{ft}^{2}=\mathbf{2 2 . 0 0} \mathbf{l b} / \mathrm{ft}^{2}$
$\mathrm{P}_{\mathrm{f}}=0.7 \times \mathrm{C}_{\mathrm{e}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{I}_{\mathrm{s}} \times \mathrm{P}_{\mathrm{g}}=\mathbf{3 8 . 5 0} \mathrm{lb} / \mathrm{ft}^{2}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.7	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Wind Loading Criteria

Areas A and B

[In accordance with ASCE7-10]

*Using the directional design method

Building data

Type of roof;
Flat
Length of building;
$\mathrm{b}=470.00 \mathrm{ft}$
Width of building;
$\mathrm{d}=\mathbf{2 0 0 . 0 0} \mathrm{ft}$
Height to eaves;
Mean height;
$\mathrm{H}=\mathbf{6 2 . 0 0} \mathrm{ft}$
$\mathrm{h}=\mathbf{6 2 . 0 0} \mathrm{ft}$

General wind load requirements

Basic wind speed;
Risk category;
Velocity pressure exponent coef (Table 26.6-1);
$\mathrm{V}=\mathbf{1 3 7 . 0} \mathrm{mph}$
III

Exposure category (cl 26.7.3);
$\mathrm{K}_{\mathrm{d}}=\mathbf{0 . 8 5}$

Enposure cation (cl.26.10);
Enclosure classification (cl.26.10); Enclosed buildings
Internal pressure coef + ve (Table 26.11-1);
$\mathrm{GC}_{\text {pi_p }}=\mathbf{0 . 1 8}$
Internal pressure coef-ve (Table 26.11-1);
$\mathrm{GC}_{\text {pi_n }}=\mathbf{- 0 . 1 8}$
Gust effect factor;
Minimum design wind loading (cl.27.4.7);
$\mathrm{G}_{\mathrm{f}}=\mathbf{0 . 8 5}$
$\mathrm{p}_{\text {min_r }}=8 \mathrm{lb} / \mathrm{ft}^{2}$

Topography

Topography factor not significant;
$\mathrm{K}_{\mathrm{zt}}=1.0$
Velocity pressure equation;
$\mathrm{q}=0.00256 \times \mathrm{K}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{zt}} \times \mathrm{K}_{\mathrm{d}} \times \mathrm{V}^{2} \times 1 \mathrm{psf} / \mathrm{mph}^{2} ;$

Velocity pressures table

$\mathbf{z}(\mathbf{f t})$	$\mathbf{K}_{\mathbf{z}}$ (Table 27.3-1)	$\mathbf{q}_{\mathbf{z}} \mathbf{(\mathbf { p s f })}$
15.00	0.85	34.72
30.00	0.98	40.02
45.00	1.07	43.50
62.00	1.14	46.48

Peak velocity pressure for internal pressure

Peak velocity pressure - internal (as roof press.); $\mathrm{q}_{\mathrm{i}}=\mathbf{4 6 . 4 8} \mathrm{psf}$

Pressures and forces

Net pressure;
$\mathrm{p}=\mathrm{q} \times \mathrm{G}_{\mathrm{f}} \times \mathrm{C}_{\mathrm{pe}}-\mathrm{q}_{\mathrm{i}} \times \mathrm{GC}_{\mathrm{pi}} ;$

Engineers Design Group inc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref. $2019-091$	
	Section				Sheet no./rev.	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Net force; $\quad F_{w}=p \times A_{\text {ref }} ;$

Roof load case 1 - Wind 0, GC $_{\text {pi }} 0.18$, - c_{pe}

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$
A (-ve)	62.00	-0.90	46.48	-43.92	14570.00	-639.93
B (-ve)	62.00	-0.90	46.48	-43.92	14570.00	-639.93
C (-ve)	62.00	-0.50	46.48	-28.12	29140.00	-819.38
D (-ve)	62.00	-0.30	46.48	-20.22	35720.00	-722.18

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=\mathbf{- 2 8 2 1 . 4 2} \mathrm{kips}$
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 1 - Wind 0, GC $_{\text {pi }} \mathbf{0 . 1 8 , ~}-\mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{1}	15.00	0.80	34.72	15.24	7050.00	107.44
$\mathrm{~A}_{2}$	30.00	0.80	40.02	18.85	7050.00	132.90
$\mathrm{~A}_{3}$	45.00	0.80	43.50	21.21	7050.00	149.54
$\mathrm{~A}_{4}$	62.00	0.80	46.48	23.24	7990.00	185.68
B	62.00	-0.50	46.48	-28.12	29140.00	-819.38
C	62.00	-0.70	46.48	-36.02	12400.00	-446.65
D	62.00	-0.70	46.48	-36.02	12400.00	-446.65

Overall loading

Projected vertical plan area of wall;
$\mathrm{A}_{\text {vert_w_0 }}=\mathrm{b} \times \mathrm{H}=\mathbf{2 9 1 4 0 . 0 0} \mathrm{ft}^{2}$
Projected vertical area of roof;
$\mathrm{A}_{\text {vert_r_} 0}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$
Minimum overall horizontal loading;
$\mathrm{F}_{\mathrm{w}, \text { total_min }}=\mathrm{p}_{\text {min_w }} \times \mathrm{A}_{\text {vert_w_0 }}+\mathrm{p}_{\text {min_r } \times \mathrm{A}_{\text {vert_r_ } 0}=\mathbf{4 6 6 . 2 4} \mathrm{kips}, ~}^{\text {kit }}$
Leeward net force;
$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 8 1 9 . 4} \mathrm{kips}$
Windward net force;
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}-4}=575.6 \mathrm{kips}$
Overall horizontal loading;
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=\mathbf{1 3 9 4 . 9}$ kips

Roof load case 2 - Wind 0, GC $_{\text {pi }} \mathbf{- 0 . 1 8 , ~} \mathbf{- 0} \mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\mathbf{r e f}}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$
$\mathrm{A}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	14570.00	18.28

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & 2019-091 \end{array}$	
	Section MSBA Design Development Submission				Sheet no./rev9	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{aligned} & \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left(\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$
$\mathrm{B}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	14570.00	18.28
$\mathrm{C}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	29140.00	36.57
$\mathrm{D}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	35720.00	44.82

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=117.96 \mathrm{kips}$
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 2 - Wind 0, GC $_{\text {pi }} \mathbf{- 0 . 1 8 , ~} \mathbf{- 0} \mathrm{c}_{\text {pe }}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure ${\text { coefficient } \mathbf{c}_{\mathbf{p e}}}$Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$	
A_{1}	15.00	0.80	34.72	31.97	7050.00	225.40
$\mathrm{~A}_{2}$	30.00	0.80	40.02	35.58	7050.00	250.86
$\mathrm{~A}_{3}$	45.00	0.80	43.50	37.94	7050.00	267.50
$\mathrm{~A}_{4}$	62.00	0.80	46.48	39.97	7990.00	319.37
B	62.00	-0.50	46.48	-11.39	29140.00	-331.82
C	62.00	-0.70	46.48	-19.29	12400.00	-239.17
D	62.00	-0.70	46.48	-19.29	12400.00	-239.17

Overall loading

Projected vertical plan area of wall;
Projected vertical area of roof;
Minimum overall horizontal loading;
Leeward net force;
Windward net force;
Overall horizontal loading;
$\mathrm{A}_{\text {vert_w_ } 0}=\mathrm{b} \times \mathrm{H}=\mathbf{2 9 1 4 0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{A}_{\text {vert_r_} 0}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$

$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 3 3 1 . 8} \mathbf{~ k i p s}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA} 4}=1063.1 \mathrm{kips}$
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=\mathbf{1 3 9 4 . 9}$ kips

Roof load case 3 - Wind 90, GC pi $^{0.18, ~-c_{p e}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\mathbf{r e f}}$ $\left.\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A (-ve)	62.00	-0.90	46.48	-43.92	6200.00	-272.31
B (-ve)	62.00	-0.90	46.48	-43.92	6200.00	-272.31
C (-ve)	62.00	-0.50	46.48	-28.12	12400.00	-348.67
D (-ve)	62.00	-0.30	46.48	-20.22	69200.00	-1399.06

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=\mathbf{- 2 2 9 2 . 3 6}$ kips

Engineers Design Grouplic.	Project				Job Ref. $2019-091$	
	MSBA Design Development Submission				10	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 3 - Wind 90, GC $_{\text {pi }} 0.18$, $-\mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\mathbf{r e f}}$ $\left(\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$
A_{1}	15.00	0.80	34.72	15.24	3000.00	45.72
$\mathrm{~A}_{2}$	30.00	0.80	40.02	18.85	3000.00	56.55
$\mathrm{~A}_{3}$	45.00	0.80	43.50	21.21	3000.00	63.63
$\mathrm{~A}_{4}$	62.00	0.80	46.48	23.24	3400.00	79.01
B	62.00	-0.28	46.48	-19.53	12400.00	-242.13
C	62.00	-0.70	46.48	-36.02	29140.00	-1049.62
D	62.00	-0.70	46.48	-36.02	29140.00	-1049.62

Overall loading

Projected vertical plan area of wall;
$\mathrm{A}_{\text {vert_w_90 }}=\mathrm{d} \times \mathrm{H}=\mathbf{1 2 4 0 0 . 0 0} \mathrm{ft}^{2}$
Projected vertical area of roof;
$\mathrm{A}_{\text {vert_r_}}{ }^{90}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$
Minimum overall horizontal loading;

Leeward net force;
$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 2 4 2 . 1} \mathrm{kips}$
Windward net force;
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA} A_{-} 1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA} \mathrm{A}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 4}=244.9 \mathrm{kips}$
Overall horizontal loading;
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=487.0 \mathrm{kips}$

Roof load case 4 - Wind 90, GC $_{\text {pi }} \mathbf{- 0 . 1 8 , ~}+\mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure ${\text { coefficient } \mathbf{c}_{\mathbf{p e}}}$Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left(\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$	
$\mathrm{A}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	6200.00	7.78
$\mathrm{~B}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	6200.00	7.78
$\mathrm{C}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	12400.00	15.56
$\mathrm{D}(+\mathrm{ve})$	62.00	-0.18	46.48	1.25	69200.00	86.84

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=117.96 \mathrm{kips}$
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 4 - Wind 90, GC $_{\text {pi }} \mathbf{- 0 . 1 8 , ~}+\mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\mathbf{r e f}}$ $\left(\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{1}	15.00	0.80	34.72	31.97	3000.00	95.92

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.11	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{2}	30.00	0.80	40.02	35.58	3000.00	106.75
$\mathrm{~A}_{3}$	45.00	0.80	43.50	37.94	3000.00	113.83
$\mathrm{~A}_{4}$	62.00	0.80	46.48	39.97	3400.00	135.90
B	62.00	-0.28	46.48	-2.79	12400.00	-34.65
C	62.00	-0.70	46.48	-19.29	29140.00	-562.06
D	62.00	-0.70	46.48	-19.29	29140.00	-562.06

Overall loading

Projected vertical plan area of wall;
Projected vertical area of roof;
Minimum overall horizontal loading;
Leeward net force;
Windward net force;
Overall horizontal loading;

Areas C and D

$A_{\text {vert_w_90 }}=\mathrm{d} \times \mathrm{H}=\mathbf{1 2 4 0 0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{A}_{\text {vert_r_}}{ }^{90}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{F}_{\mathrm{w}, \text { total_min }}=\mathrm{p}_{\text {min_w } \times \mathrm{A}_{\text {vert_w_90 }}+\mathrm{p}_{\text {min_r }} \times \mathrm{A}_{\text {vert_r_ } 90}=\mathbf{1 9 8 . 4 0} \mathrm{kips}, ~}^{\text {kit }}$
$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 3 4 . 7} \mathrm{kips}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}-4}=\mathbf{4 5 2 . 4} \mathrm{kips}$
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=487.0$ kips
[In accordance with ASCE 7-10]

*Using the directional design method

Building data

Type of roof;
Length of building;
Width of building;
Height to eaves;
Mean height;
Flat
$\mathrm{b}=285.00 \mathrm{ft}$
$\mathrm{d}=\mathbf{2 0 0 . 0 0} \mathrm{ft}$
$\mathrm{H}=\mathbf{8 2 . 0 0} \mathrm{ft}$
$\mathrm{h}=\mathbf{8 2 . 0 0} \mathrm{ft}$

General wind load requirements

Basic wind speed;
Risk category;
Velocity pressure exponent coef (Table 26.6-1);
Exposure category (cl 26.7.3);
Enclosure classification (cl.26.10);
Internal pressure coef + ve (Table 26.11-1);
Internal pressure coef-ve (Table 26.11-1);
Gust effect factor;
$\mathrm{V}=\mathbf{1 3 7 . 0} \mathrm{mph}$
III
$\mathrm{K}_{\mathrm{d}}=\mathbf{0 . 8 5}$
C
Enclosed buildings
$\mathrm{GC}_{\mathrm{pi} _\mathrm{p}}=\mathbf{0 . 1 8}$
$\mathrm{GC}_{\text {pi_n }}=\mathbf{- 0 . 1 8}$
$\mathrm{G}_{\mathrm{f}}=\mathbf{0 . 8 5}$

Engineers Design Groupic.					Job Ref. $2019-091$	
	Section				Sheet no./rev.12	
	MSBA Design Development Submission					
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Topography

Topography factor not significant;
Velocity pressure equation;
$\mathrm{K}_{\mathrm{zt}}=1.0$

Velocity pressures table

$\mathbf{z}(\mathbf{f t})$	$\mathbf{K}_{\mathbf{z}}$ (Table 27.3-1)	$\mathbf{q}_{\mathbf{z}} \mathbf{(p s f)}$
15.00	0.85	34.72
40.00	1.04	42.47
60.00	1.13	46.15
82.00	1.22	49.66

Peak velocity pressure for internal pressure

Peak velocity pressure - internal (as roof press.); $\mathrm{q}_{\mathrm{i}}=\mathbf{4 9 . 6 6} \mathrm{psf}$
Pressures and forces
Net pressure; $\quad \mathrm{p}=\mathrm{q} \times \mathrm{G}_{\mathrm{f}} \times \mathrm{C}_{\mathrm{pe}}-\mathrm{q}_{\mathrm{i}} \times \mathrm{GC}_{\mathrm{pi}}$;
Net force; $\quad \mathrm{F}_{\mathrm{w}}=\mathrm{p} \times \mathrm{A}_{\mathrm{ref}}$;

Roof load case 1 - Wind 0, GC $_{\text {pi }} 0.18,-c_{p e}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure ${\text { coefficient } \mathbf{c}_{\mathbf{p e}}}$Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$	
A (-ve)	82.00	-0.90	49.66	-46.93	11685.00	-548.40
B (-ve)	82.00	-0.90	49.66	-46.93	11685.00	-548.40
C (-ve)	82.00	-0.50	49.66	-30.05	23370.00	-702.18
D (-ve)	82.00	-0.30	49.66	-21.60	10260.00	-221.65

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=\mathbf{- 2 0 2 0 . 6 2} \mathrm{kips}$
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 1 - Wind 0, GC $_{\text {pi }} \mathbf{0 . 1 8},-\mathbf{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{1}	15.00	0.80	34.72	14.67	4275.00	62.70
$\mathrm{~A}_{2}$	40.00	0.80	42.47	19.94	7125.00	142.10
$\mathrm{~A}_{3}$	60.00	0.80	46.15	22.44	5700.00	127.93
$\mathrm{~A}_{4}$	82.00	0.80	49.66	24.83	6270.00	155.69
B	82.00	-0.50	49.66	-30.05	23370.00	-702.18

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.	
	MSBA Design Development Submission				13	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Zone	Ref. height $\mathbf{(f t)}$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
C	82.00	-0.70	49.66	-38.49	16400.00	-631.22
D	82.00	-0.70	49.66	-38.49	16400.00	-631.22

Overall loading

Projected vertical plan area of wall;
$\mathrm{A}_{\text {vert_w- } 0}=\mathrm{b} \times \mathrm{H}=\mathbf{2 3 3 7 0 . 0 0} \mathrm{ft}^{2}$
Projected vertical area of roof;
Minimum overall horizontal loading;
$\mathrm{A}_{\text {vert_r_} 0}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{F}_{\mathrm{w}, \text { total_min }}=\mathrm{p}_{\text {min_w }} \times \mathrm{A}_{\text {vert_w_0 }}+\mathrm{p}_{\text {min_r } \times \mathrm{A}_{\text {vert_r_ } 0}=\mathbf{3 7 3 . 9 2} \text { kips }, ~}^{\text {kin }}$
Leeward net force;
$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 7 0 2 . 2} \mathrm{kips}$
Windward net force;
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 4}=488.4 \mathrm{kips}$
Overall horizontal loading;
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=\mathbf{1 1 9 0 . 6}$ kips

Roof load case 2 - Wind $0, G C_{p i} \mathbf{- 0 . 1 8 , ~} \mathbf{- 0} \mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height (ft)	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A (+ve)	82.00	-0.18	49.66	1.34	11685.00	15.67
B (+ve)	82.00	-0.18	49.66	1.34	11685.00	15.67
C (+ve)	82.00	-0.18	49.66	1.34	23370.00	31.34
D (+ve)	82.00	-0.18	49.66	1.34	10260.00	13.76

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=76.43 \mathrm{kips}$
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 2 - Wind $0, \mathbf{G C}_{\text {pi }} \mathbf{- 0 . 1 8 , ~}-\mathbf{0} \mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{1}	15.00	0.80	34.72	32.55	4275.00	139.13
$\mathrm{~A}_{2}$	40.00	0.80	42.47	37.82	7125.00	269.48
$\mathrm{~A}_{3}$	60.00	0.80	46.15	40.32	5700.00	229.83
$\mathrm{~A}_{4}$	82.00	0.80	49.66	42.71	6270.00	267.79
B	82.00	-0.50	49.66	-12.17	23370.00	-284.35
C	82.00	-0.70	49.66	-20.61	16400.00	-338.01
D	82.00	-0.70	49.66	-20.61	16400.00	-338.01

Engineers Design Grouplic.	Project				Job Ref. $2019-091$	
	MSBA Design Development Submission				14	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Overall loading

Projected vertical plan area of wall;
Projected vertical area of roof;
Minimum overall horizontal loading;
Leeward net force;
Windward net force;
Overall horizontal loading;
$\mathrm{A}_{\text {vert_w_ } 0}=\mathrm{b} \times \mathrm{H}=\mathbf{2 3 3 7 0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{A}_{\text {vert_r}-0}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{F}_{\mathrm{w}, \text { total_min }}=\mathrm{p}_{\text {min_w }} \times \mathrm{A}_{\text {vert_w_0 }}+\mathrm{p}_{\text {min_r } \times \mathrm{A}_{\text {vert_r_ } 0}=\mathbf{3 7 3 . 9 2} \mathrm{kips}, ~}^{\text {kip }}$
$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 2 8 4 . 4} \mathrm{kips}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 4}=\mathbf{9 0 6 . 2} \mathbf{~ k i p s}$
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=\mathbf{1 1 9 0 . 6}$ kips

Roof load case 3 - Wind 90, GC pi $_{\text {0 }} \mathbf{0 . 1 8 , ~ - ~} \mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$
A (-ve)	82.00	-0.90	49.66	-46.93	8200.00	-384.84
B (-ve)	82.00	-0.90	49.66	-46.93	8200.00	-384.84
C (-ve)	82.00	-0.50	49.66	-30.05	16400.00	-492.76
D (-ve)	82.00	-0.30	49.66	-21.60	24200.00	-522.80

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=\mathbf{- 1 7 8 5 . 2 4}$ kips
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 3 - Wind 90, GC $_{\text {pi }} \mathbf{0 . 1 8}$, - c_{pe}

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{1}	15.00	0.80	34.72	14.67	3000.00	44.00
$\mathrm{~A}_{2}$	40.00	0.80	42.47	19.94	5000.00	99.72
$\mathrm{~A}_{3}$	60.00	0.80	46.15	22.44	4000.00	89.77
$\mathrm{~A}_{4}$	82.00	0.80	49.66	24.83	4400.00	109.26
B	82.00	-0.41	49.66	-26.46	16400.00	-433.91
C	82.00	-0.70	49.66	-38.49	23370.00	-899.49
D	82.00	-0.70	49.66	-38.49	23370.00	-899.49

Overall loading

Projected vertical plan area of wall;
$A_{\text {vert_w_90 }}=\mathrm{d} \times \mathrm{H}=\mathbf{1 6 4 0 0 . 0 0} \mathrm{ft}^{2}$
Projected vertical area of roof;
$\mathrm{A}_{\text {vert_r_}} \mathrm{g}_{0}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$
Minimum overall horizontal loading;

Leeward net force;
$\mathrm{F}_{1}=\mathrm{F}_{\mathrm{w}, \mathrm{wB}}=\mathbf{- 4 3 3 . 9} \mathrm{kips}$

Engineers Design Grouplic.	\qquad				Job Ref.2019-091	
	Section				Sheet no./rev.15	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Windward net force;	$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA} _1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA} _2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA} _3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA} _4}=\mathbf{3 4 2 . 8} \mathrm{kips}$
Overall horizontal loading;	$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=\mathbf{7 7 6 . 7} \mathrm{kips}$

Roof load case 4 - Wind 90, GC $_{\text {pi }} \mathbf{- 0 . 1 8 ,}+\mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c p e}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s)}$
$\mathrm{A}(+\mathrm{ve})$	82.00	-0.18	49.66	1.34	8200.00	11.00
$\mathrm{~B}(+\mathrm{ve})$	82.00	-0.18	49.66	1.34	8200.00	11.00
$\mathrm{C}(+\mathrm{ve})$	82.00	-0.18	49.66	1.34	16400.00	21.99
$\mathrm{D}(+\mathrm{ve})$	82.00	-0.18	49.66	1.34	24200.00	32.45

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=76.43 \mathrm{kips}$
Total horizontal net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=\mathbf{0 . 0 0} \mathrm{kips}$

Walls load case 4 - Wind 90, GC pi $^{\mathbf{-}} \mathbf{- 0 . 1 8 , ~}+\mathrm{c}_{\mathrm{pe}}$

Zone	Ref. height $(\mathbf{f t})$	Ext pressure coefficient $\mathbf{c}_{\mathbf{p e}}$	Peak velocity pressure $\mathbf{q}_{\mathbf{p}}$ $(\mathbf{p s f})$	Net pressure \mathbf{p} $(\mathbf{p s f})$	Area $\mathbf{A}_{\text {ref }}$ $\left.\mathbf{(f t}^{2}\right)$	Net force $\mathbf{F}_{\mathbf{w}}$ $(\mathbf{k i p s})$
A_{1}	15.00	0.80	34.72	32.55	3000.00	97.64
$\mathrm{~A}_{2}$	40.00	0.80	42.47	37.82	5000.00	189.11
$\mathrm{~A}_{3}$	60.00	0.80	46.15	40.32	4000.00	161.29
$\mathrm{~A}_{4}$	82.00	0.80	49.66	42.71	4400.00	187.93
B	82.00	-0.41	49.66	-8.58	16400.00	-140.70
C	82.00	-0.70	49.66	-20.61	23370.00	-481.66
D	82.00	-0.70	49.66	-20.61	23370.00	-481.66

Overall loading

Projected vertical plan area of wall;
Projected vertical area of roof;
Minimum overall horizontal loading;
Leeward net force;
Windward net force;
Overall horizontal loading;
$A_{\text {vert_w_90 }}=\mathrm{d} \times \mathrm{H}=\mathbf{1 6 4 0 0 . 0 0} \mathrm{ft}^{2}$
$\mathrm{A}_{\text {vert_r_} \quad 90}=\mathbf{0 . 0 0} \mathrm{ft}^{2}$

$F_{1}=F_{w, w B}=\mathbf{- 1 4 0 . 7} \mathbf{~ k i p s}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wA} _1}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 2}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}_{-} 3}+\mathrm{F}_{\mathrm{w}, \mathrm{wA}-4}=636.0 \mathrm{kips}$
$\mathrm{F}_{\mathrm{w}, \text { total }}=\max \left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{1}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}, \mathrm{F}_{\mathrm{w}, \text { total_min }}\right)=\mathbf{7 7 6 . 7} \mathrm{kips}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$

Seismic Loading Calculations

Areas A and B

[In accordance with ASCE 7-10]

Site parameters

Site class;
D
Mapped acceleration parameters (Section 11.4.1)
at short period;
$\mathrm{S}_{\mathrm{S}}=\mathbf{0 . 2 5}$
at 1 sec period;
$\mathrm{S}_{1}=\mathbf{0 . 0 8}$
Site coefficientat short period (Table 11.4-1);
$\mathrm{F}_{\mathrm{a}}=\mathbf{1 . 6 0 0}$
at 1 sec period (Table 11.4-2);
$\mathrm{F}_{\mathrm{v}}=\mathbf{2 . 4 0 0}$

Spectral response acceleration parameters

at short period (Eq. 11.4-1);
$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \times \mathrm{S}_{\mathrm{S}}=\mathbf{0 . 4 0 0}$
at 1 sec period (Eq. 11.4-2);
$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \times \mathrm{S}_{1}=\mathbf{0 . 1 9 2}$

Design spectral acceleration parameters (Sect 11.4.4)

at short period (Eq. 11.4-3);
$\mathrm{S}_{\mathrm{DS}}=2 / 3 \times \mathrm{S}_{\mathrm{MS}}=\mathbf{0 . 2 6 7}$
at 1 sec period (Eq. 11.4-4);
$\mathrm{S}_{\mathrm{D} 1}=2 / 3 \times \mathrm{S}_{\mathrm{M} 1}=\mathbf{0 . 1 2 8}$

Seismic design category

Risk category (Table 1.5-1);
III

Seismic design category based on short period response acceleration (Table 11.6-1)
B
Seismic design category based on 1 sec period response acceleration (Table 11.6-2)
B
Seismic design category;
B

Approximate fundamental period

Height above base to highest level of building; $\quad h_{n}=\mathbf{6 2 ~ f t}$

From Table 12.8-2:
Structure type;
All other systems
Building period parameter C_{t};
$\mathrm{C}_{\mathrm{t}}=\mathbf{0 . 0 2}$
Building period parameter x ;
$\mathrm{x}=\mathbf{0 . 7 5}$

Approximate fundamental period (Eq 12.8-7);
$\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \times\left(\mathrm{h}_{\mathrm{n}}\right)^{\mathrm{x}} \times 1 \mathrm{sec} /(1 \mathrm{ft})^{\mathrm{x}}=\mathbf{0} .442 \mathrm{sec}$
Building fundamental period (Sect 12.8.2);
Long-period transition period;
$\mathrm{T}=\mathrm{T}_{\mathrm{a}}=\mathbf{0 . 4 4 2} \mathrm{sec}$

Seismic response coefficient
Seismic force-resisting system (Table 12.2-1);
$\mathrm{T}_{\mathrm{L}}=\mathbf{1 2} \mathrm{sec}$

B_BUILDING_FRAME_SYSTEMS
3. Ordinary steel concentrically braced frames

Engineers Design Groupinc.					Job Ref. $2019-091$	
	Section				Sheet no./rev.17	
	MSBA Design Development Submission					
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

```
Response modification factor (Table 12.2-1); \(\quad \mathrm{R}=\mathbf{3 . 2 5}\)
Seismic importance factor (Table 1.5-2);
\(\mathrm{I}_{\mathrm{e}}=1.250\)
Seismic response coefficient (Sect 12.8.1.1)
Calculated (Eq 12.8-2);
\(\mathrm{C}_{\mathrm{s}_{\text {_calc }}}=\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)=\mathbf{0 . 1 0 2 6}\)
Maximum (Eq 12.8-3);
\(\mathrm{C}_{\mathrm{S}_{-} \max }=\mathrm{S}_{\mathrm{D} 1} /\left((\mathrm{T} / 1 \mathrm{sec}) \times\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)\right)=\mathbf{0 . 1 1 1 4}\)
Minimum (Eq 12.8-5);
\(\mathrm{C}_{\mathrm{s}^{2} \min }=\max \left(0.044 \times \mathrm{S}_{\mathrm{DS}} \times \mathrm{I}_{\mathrm{e}}, 0.01\right)=\mathbf{0 . 0 1 4 7}\)
\(\mathrm{C}_{\mathrm{s}}=\mathbf{0 . 1 0 2 6}\)
Seismic base shear (Sect 12.8.1)
Effective seismic weight of the structure;
\(\mathrm{W}=19660.0 \mathrm{kips}\)
Seismic response coefficient;
\(\mathrm{C}_{\mathrm{s}}=\mathbf{0 . 1 0 2 6}\)
Seismic base shear (Eq 12.8-1);
\(\mathrm{V}=\mathrm{C}_{\mathrm{s}} \times \mathrm{W}=\mathbf{2 0 1 6 . 4} \mathrm{kips}\)
```


Areas C and D

[In accordance with ASCE 7-10]

Site parameters

Site class;
D
Mapped acceleration parameters (Section 11.4.1)
at short period;
$\mathrm{S}_{\mathrm{S}}=\mathbf{0 . 2 5}$
at 1 sec period;
$\mathrm{S}_{1}=0.08$
Site coefficientat short period (Table 11.4-1);
$\mathrm{F}_{\mathrm{a}}=\mathbf{1 . 6 0 0}$
at 1 sec period (Table 11.4-2);
$\mathrm{F}_{\mathrm{v}}=\mathbf{2 . 4 0 0}$
Spectral response acceleration parameters
at short period (Eq. 11.4-1);
$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \times \mathrm{S}_{\mathrm{S}}=\mathbf{0 . 4 0 0}$
at 1 sec period (Eq. 11.4-2);
$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \times \mathrm{S}_{1}=\mathbf{0 . 1 9 2}$

Design spectral acceleration parameters (Sect 11.4.4)

at short period (Eq. 11.4-3);
$\mathrm{S}_{\mathrm{DS}}=2 / 3 \times \mathrm{S}_{\mathrm{MS}}=\mathbf{0 . 2 6 7}$
at 1 sec period (Eq. 11.4-4);
$\mathrm{S}_{\mathrm{D} 1}=2 / 3 \times \mathrm{S}_{\mathrm{M} 1}=\mathbf{0 . 1 2 8}$

Seismic design category

Risk category (Table 1.5-1);
III

Seismic design category based on short period response acceleration (Table 11.6-1)
B
Seismic design category based on 1 sec period response acceleration (Table 11.6-2)
B
Seismic design category;
B

Approximate fundamental period

Height above base to highest level of building; $\quad h_{n}=\mathbf{8 2} \mathrm{ft}$

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.	
	Calc. by AA	$\begin{array}{\|l} \text { Date } \\ 07 / 20 / 2022 \end{array}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	Date $07 / 27 / 2022$

From Table 12.8-2:

Structure type;
Building period parameter C_{t};
Building period parameter x ;

Approximate fundamental period (Eq 12.8-7);
Building fundamental period (Sect 12.8.2);
Long-period transition period;

Seismic response coefficient

Seismic force-resisting system (Table 12.2-1);

Response modification factor (Table 12.2-1);
Seismic importance factor (Table 1.5-2);
Seismic response coefficient (Sect 12.8.1.1)
Calculated (Eq 12.8-2);
Maximum (Eq 12.8-3);
Minimum (Eq 12.8-5);
Seismic response coefficient;
Seismic base shear (Sect 12.8.1)
Effective seismic weight of the structure;
Seismic response coefficient;
Seismic base shear (Eq 12.8-1);

All other systems
$\mathrm{C}_{\mathrm{t}}=\mathbf{0 . 0 2}$
$\mathrm{x}=0.75$
$\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \times\left(\mathrm{h}_{\mathrm{n}}\right)^{\mathrm{x}} \times \square 1 \mathrm{sec} /(1 \mathrm{ft})^{\mathrm{x}}=\mathbf{0 . 5 4 5} \mathrm{sec}$
$\mathrm{T}=\mathrm{T}_{\mathrm{a}}=\mathbf{0 . 5 4 5} \mathrm{sec}$
$\mathrm{T}_{\mathrm{L}}=\mathbf{1 2} \mathrm{sec}$

B_BUILDING_FRAME_SYSTEMS
3. Ordinary steel concentrically braced frames
$\mathrm{R}=\mathbf{3 . 2 5}$
$I_{\text {e }}=\mathbf{1 . 2 5 0}$
$\mathrm{C}_{\mathrm{s}_{\text {_calc }}}=\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)=\mathbf{0 . 1 0 2 6}$
$\mathrm{C}_{\mathrm{s}_{-} \max }=\mathrm{S}_{\mathrm{D} 1} /\left((\mathrm{T} / 1 \mathrm{sec}) \times\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)\right)=\mathbf{0 . 0 9 0 3}$
$\mathrm{C}_{\mathrm{S}_{-} \min }=\max \left(0.044 \times \mathrm{S}_{\mathrm{DS}} \times \mathrm{I}_{\mathrm{e}}, 0.01\right)=\mathbf{0 . 0 1 4 7}$
$\mathrm{C}_{\mathrm{s}}=\mathbf{0 . 0 9 0 3}$
$\mathrm{W}=9390.0 \mathrm{kips}$
$\mathrm{C}_{\mathrm{s}}=\mathbf{0 . 0 9 0 3}$
$\mathrm{V}=\mathrm{C}_{\mathrm{s}} \times \mathrm{W}=\mathbf{8 4 8 . 2}$ kips

 Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.	
	Calc. by AA	$\begin{array}{\|l} \text { Date } \\ 07 / 20 / 2022 \end{array}$	Chk'd by MD	$\begin{aligned} & \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$	App'd by MD	Date $07 / 27 / 2022$

Sample Gravity Analysis and Design Calculations

1. Sample Steel Roof Beam

[In accordance with AISC360-16 using the LRFD method]

Support conditions

Support A

Support B

Applied loading

Beam loads | Dead self weight of beam $\times 1$ | |
| :--- | :--- |
| | Dead full UDL $0.35 \mathrm{kips} / \mathrm{ft}$ |
| | Snow full UDL $0.4 \mathrm{kips} / \mathrm{ft}$ |
| | Roof Live full UDL $0.2 \mathrm{kips} / \mathrm{ft}$ |

Load combinations

Load combination 1 - Full

Analysis results

Maximum moment;
Maximum shear;
Deflection;
Maximum reaction at support A;
Unfactored dead load reaction at support A;
Unfactored snow load reaction at support A;
Unfactored roof live load reaction at support A;
Maximum reaction at support B;
Unfactored dead load reaction at support B;
Unfactored snow load reaction at support B;

Support A	Dead $\times 1.20$
	Live $\times 1.60$
	Snow $\times 1.60$
	Roof Live $\times 1.60$
	Dead $\times 1.20$
	Live $\times 1.60$
	Snow $\times 1.60$
	Roof Live $\times 1.60$
Support B	Dead $\times 1.20$
	Live $\times 1.60$
	Snow $\times 1.60$
	Roof Live $\times 1.60$

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Dead self weight of beam $\times 1$
Dead full UDL $0.35 \mathrm{kips} / \mathrm{ft}$

Roof Live full UDL $0.2 \mathrm{kips} / \mathrm{ft}$
$\mathrm{M}_{\max }=\mathbf{2 3 4 . 3}$ kips_ft;
$V_{\max }=\mathbf{2 6} \mathrm{kips} ;$
$\delta_{\text {max }}=\mathbf{1 i n}$;
$\mathrm{R}_{\mathrm{A}_{-} \max }=\mathbf{2 6} \mathrm{kips} ;$
$\mathrm{R}_{\mathrm{A}_{-} \text {Dead }}=7.3 \mathrm{kips}$
$\mathrm{R}_{\mathrm{A}_{-} \text {Snow }}=7.2 \mathrm{kips}$
$\mathrm{R}_{\mathrm{A}_{-} \text {Roof Live }}=\mathbf{3 . 6} \mathbf{~ k i p s}$
$\mathrm{R}_{\mathrm{B}_{-} \max }=\mathbf{2 6}$ kips;
$\mathrm{R}_{\mathrm{B}_{-} \text {Dead }}=7.3 \mathrm{kips}$
$\mathrm{R}_{\mathrm{B}_{-} \text {Snow }}=7.2 \mathrm{kips}$
$\mathrm{M}_{\text {min }}=\mathbf{0}$ kips_ft
$V_{\text {min }}=\mathbf{- 2 6}$ kips
$\delta_{\text {min }}=\mathbf{0}$ in
$\mathrm{R}_{\mathrm{A}_{-} \min }=\mathbf{2 6}$ kips
$\mathrm{R}_{\text {B_min }}=\mathbf{2 6}$ kips

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.20	
	Calc. by AA	$\begin{array}{\|l} \text { Date } \\ 07 / 20 / 2022 \end{array}$	Chk'd by MD	$\begin{aligned} & \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$	App'd by MD	Date $07 / 27 / 2022$

Unfactored roof live load reaction at support B; $\quad \mathrm{R}_{\text {B_Roof Live }=\mathbf{3 . 6} \mathrm{kips}, ~}^{\text {in }}$

Section details

Section type;
ASTM steel designation;
W 24x55 (AISC 15th Edn (v15.0))
A992
Steel yield stress;
$\mathrm{F}_{\mathrm{y}}=\mathbf{5 0} \mathrm{ksi}$
Steel tensile stress;
$\mathrm{F}_{\mathrm{u}}=\mathbf{6 5} \mathrm{ksi}$
Modulus of elasticity;
$\mathrm{E}=29000 \mathrm{ksi}$

Resistance factors

Resistance factor for tensile yielding
$\phi_{t y}=0.90$
Resistance factor for tensile rupture
$\phi_{\mathrm{tr}}=0.75$
Resistance factor for compression
$\phi_{c}=0.90$
Resistance factor for flexure
$\phi_{b}=0.90$

Lateral bracing

Span 1 has continuous lateral bracing

Classification of sections for local buckling - Section B4.1

Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio;
Limiting ratio for compact section;
Limiting ratio for non-compact section;
$\mathrm{b}_{\mathrm{f}} /\left(2 \times \mathrm{t}_{\mathrm{f}}\right)=\mathbf{6 . 9 4}$
$\lambda_{\text {pff }}=0.38 \times \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=\mathbf{9 . 1 5}$
$\lambda_{\mathrm{rff}}=1.0 \times \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=\mathbf{2 4 . 0 8} ; \quad$ Compact

Classification of web in flexure - Table B4.1b (case 15)

Width to thickness ratio;
Limiting ratio for compact section;
Limiting ratio for non-compact section;
$(\mathrm{d}-2 \times \mathrm{k}) / \mathrm{t}_{\mathrm{w}}=\mathbf{5 4 . 6 3}$
$\lambda_{\text {pwf }}=3.76 \times \sqrt{ }\left[E / F_{y}\right]=\mathbf{9 0 . 5 5}$
$\lambda_{\text {rwf }}=5.70 \times \sqrt{ }\left[\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right]=\mathbf{1 3 7 . 2 7} ; \quad$ Compact
Section is compact in flexure

Design of members for shear - Chapter G

Required shear strength
Web area
$\mathrm{V}_{\mathrm{r}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\max }\right), \mathrm{abs}\left(\mathrm{V}_{\min }\right)\right)=\mathbf{2 6 . 0 3 1} \mathrm{kips}$
$\mathrm{A}_{\mathrm{w}}=\mathrm{d} \times \mathrm{t}_{\mathrm{w}}=9.322 \mathrm{in}^{2}$
Web plate buckling coefficient
Web shear coefficient - eq G2-3
Nominal shear strength - eq G6-1
Resistance factor for shear
Design shear strength
$\mathrm{k}_{\mathrm{v}}=5.34$
$\mathrm{C}_{\mathrm{v} 1}=\mathbf{1}$
$\mathrm{V}_{\mathrm{n}}=0.6 \times \mathrm{F}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{w}} \times \mathrm{C}_{\mathrm{v} 1}=\mathbf{2 7 9 . 6 6 0} \mathrm{kips}$
$\phi_{\mathrm{v}}=0.90$
$\mathrm{V}_{\mathrm{c}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=\mathbf{2 5 1 . 6 9 4} \mathrm{kips}$

PASS - Design shear strength exceeds required shear strength

Design of members for flexure in the major axis - Chapter \mathbf{F}

Required flexural strength;
$\mathrm{M}_{\mathrm{r}}=\max \left(\operatorname{abs}\left(\mathrm{M}_{\text {sl_max }}\right), \operatorname{abs}\left(\mathrm{M}_{\text {s1_min }}\right)\right)=\mathbf{2 3 4 . 2 7 6}$ kips_ft

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.21	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	Date $07 / 27 / 2022$

Yielding - Section F2.1

Nominal flexural strength for yielding - eq F2-1;
$\mathrm{M}_{\text {nyld }}=\mathrm{M}_{\mathrm{p}}=\mathrm{F}_{\mathrm{y}} \times \mathrm{Z}_{\mathrm{x}}=\mathbf{5 5 8 . 3 3 3}$ kips_ft
Nominal flexural strength;
$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{nyld}}=558.333 \mathrm{kips} \mathrm{ft}^{\mathrm{ft}}$
Design flexural strength;
$\mathrm{M}_{\mathrm{c}}=\phi_{\mathrm{b}} \times \mathrm{M}_{\mathrm{n}}=\mathbf{5 0 2 . 5 0 0} \mathbf{k i p s} \mathrm{ft}$
PASS - Design flexural strength exceeds required flexural strength

Design of members for vertical deflection

Consider deflection due to dead, live, snow and roof live loads

Limiting deflection;
$\delta_{\text {lim }}=\min \left(1.5 \mathrm{in}, \mathrm{L}_{\mathrm{s} 1} / 360\right)=1.2 \mathrm{in}$
Maximum deflection span 1;
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=\mathbf{0 . 9 7}$ in
PASS - Maximum deflection does not exceed deflection limit

2. Sample Composite Steel Floor Beam

[In accordance with AISC 360-16 using the load and resistance factor design method]

Design summary

$\begin{array}{ll}\text { Overall design status; } & \text { Pass } \\ \text { Overall design utilisation; } & 0.847\end{array}$

Description	Unit	Provided	Required	Utilization	Result
Moment, constr	(kip_ft)	502.5	157.8	0.314	PASS
Shear, constr	(kips)	251.69	17.53	0.070	PASS
Moment, comp	$($ kip_ft $)$	786.81	387.17	0.492	PASS
Shear, comp	(kips)	251.69	43.02	0.171	PASS
Deflection, constr	(in)	1.5	0.72	0.479	PASS
Deflection, comp	(in)	1.5	1.27	0.847	PASS

Basic dimensions

Beam span;
Beam spacing on one side;
Beam spacing on other side;
Deck orientation;
Profiles are assumed to meet all dimensional criteria in AISC 360-16
Overall depth of slab;
Height of ribs;
Centers of ribs;
Average width of rib;
$\mathrm{L}=\mathbf{3 6 . 0 0 0} \mathrm{ft}$
$\mathrm{b}_{1}=\mathbf{1 0 . 0 0 0} \mathrm{ft}$
$\mathrm{b}_{2}=\mathbf{1 0 . 0 0 0} \mathrm{ft}$
Deck ribs perpendicular to beam
$\mathrm{t}=5.250$ in
$\mathrm{h}_{\mathrm{r}}=2.000$ in
$\mathrm{rib}_{\mathrm{ccs}}=\mathbf{1 2 . 0 0 0}$ in
$\mathrm{w}_{\mathrm{r}}=7.000$ in

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.22	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Material properties

Concrete
Specified compressive strength of concrete;
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4.00 \mathrm{ksi}$
Wet density of concrete;
$\mathrm{W}_{\mathrm{cw}}=\mathbf{1 2 5} \mathrm{lb} / \mathrm{ft}^{3}$
Dry density of concrete;
$\mathrm{w}_{\mathrm{cd}}=115 \mathrm{lb} / \mathrm{ft}^{3}$
Modulus of elasticity of concrete;
$\mathrm{E}_{\mathrm{c}}=\mathrm{w}_{\mathrm{cd}}{ }^{1.5} \times \sqrt{ }\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}} \times 1 \mathrm{ksi}\right) /\left(1 \mathrm{lb} / \mathrm{ft}^{3}\right)^{1.5}=\mathbf{2 4 6 6} \mathbf{k s i}$
Steel
Specified minimum yield stress of steel;
$\mathrm{F}_{\mathrm{y}}=\mathbf{5 0} \mathrm{ksi}$
Modulus of elasticity of steel;
$\mathrm{E}_{\mathrm{S}}=\mathbf{2 9 0 0 0} \mathrm{ksi}$

Loading - secondary beam

Weight of slab construction stage;
Weight of slab composite stage;
$\mathrm{W}_{\text {slab_constr }}=\left[\mathrm{t}-\mathrm{h}_{\mathrm{r}} \times\left(1-\mathrm{w}_{\mathrm{r}} /\right.\right.$ rib $\left.\left._{\mathrm{ccs}}\right)\right] \times \mathrm{w}_{\mathrm{cw}}=\mathbf{4 6 . 0 0 7} \mathrm{psf}$
$\mathrm{w}_{\text {slab_comp }}=\left[\mathrm{t}-\mathrm{h}_{\mathrm{r}} \times\left(1-\mathrm{w}_{\mathrm{r}} / \mathrm{rib}_{\mathrm{ccs}}\right)\right] \times \mathrm{w}_{\mathrm{cd}}=\mathbf{4 2 . 3 2 6} \mathrm{psf}$
Weight of steel deck;
Additional dead load;
$\mathrm{w}_{\text {deck }}=\mathbf{3 . 0 0 0} \mathrm{psf}$
$\mathrm{w}_{\mathrm{d} _ \text {add }}=\mathbf{0 . 0 0 0} \mathrm{psf}$
Weight of steel beam;
Weight of construction live load;
$\mathrm{W}_{\text {beam } \mathrm{s}}=\mathbf{5 5 . 0 0 0} \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\text {constr }}=\mathbf{2 0 . 0 0 0} \mathrm{psf}$
Superimposed dead load;
Weight of wall parallel to span;
Weight of wall perpendicular to span;
Floor live load;
Lightweight partition load;
Total construction stage dead load;
$\mathrm{W}_{\text {serv }}=\mathbf{1 5 . 0 0 0} \mathrm{psf}$
$\mathrm{w}_{\mathrm{w} _ \text {par }}=\mathbf{0 . 0 0 0} \mathrm{lb} / \mathrm{ft}$
$\mathrm{w}_{\mathrm{w} _ \text {perp }}=\mathbf{0 . 0 0 0} \mathrm{lb} / \mathrm{ft}$;assumed to be at mid-span.
$\mathrm{w}_{\mathrm{imp}}=\mathbf{1 0 0 . 0 0 0} \mathrm{psf}$
$\mathrm{w}_{\text {part }}=\mathbf{0 . 0 0 0} \mathrm{psf}$
$\mathrm{w}_{\text {constr_ }}=\left[\left(\mathrm{w}_{\text {slab_constr }}+\mathrm{w}_{\text {deck }}+\mathrm{w}_{\text {d_add }}\right) \times\left(\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2\right)\right]+\mathrm{w}_{\text {beam_s }}=\mathbf{5 4 5 . 0 6 9} \mathbf{l b} / \mathrm{ft}$
Total construction stage live load;
$\mathrm{w}_{\text {constr_L }}=\mathrm{w}_{\text {constr }} \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2=\mathbf{2 0 0 . 0 0 0} \mathrm{lb} / \mathrm{ft}$
Total composite stage dead load(excluding walls); $\mathrm{w}_{\text {comp_ }}=\left[\left(\mathrm{w}_{\text {slab_comp }}+\mathrm{w}_{\text {deck }}+\mathrm{w}_{\text {d_add }}+\mathrm{w}_{\text {serv }}\right) \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2\right]+\mathrm{w}_{\text {beam_s }}=\mathbf{6 5 8 . 2 6 4}$
$\mathrm{lb} / \mathrm{ft}$
Total composite stage live load;
$\mathrm{w}_{\text {comp_L }}=\left(\mathrm{w}_{\text {imp }}+\mathrm{w}_{\text {part }}\right) \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2=\mathbf{1 0 0 0 . 0 0 0} \mathbf{l b} / \mathrm{ft} ;$

Design forces - secondary beam

Max ultimate moment at construction stage;
Max ultimate shear at construction stage;
$\mathrm{M}_{\text {constr_u }}=\left(1.2 \times \mathrm{w}_{\text {constr_ }}+1.6 \times \mathrm{w}_{\text {constr_L }}\right) \times \mathrm{L}^{2 / 8}=\mathbf{1 5 7 . 8 0 1}$ kips_ft
$\mathrm{V}_{\text {constr_u }}=\left(1.2 \times \mathrm{w}_{\left.\text {constr_D }+1.6 \times \mathrm{w}_{\text {constr_L }}\right) \times \mathrm{L} / 2=\mathbf{1 7 . 5 3 4} \mathrm{kips}, ~}^{\text {2 }}\right.$
Maximum ultimate moment at composite stage;
$\mathrm{M}_{\text {comp_u }}=\left(1.2 \times \mathrm{w}_{\text {comp_D }}+1.6 \times \mathrm{w}_{\text {comp_L }}\right) \times \mathrm{L}^{2} / 8+1.2 \times \mathrm{w}_{\mathrm{w}^{\prime} \text { par }} \times \mathrm{L}^{2} / 8+1.2 \times \mathrm{w}_{\mathrm{w} _ \text {perp }} \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2 \times \mathrm{L} / 4=\mathbf{3 8 7 . 1 6 6} \mathrm{kips} \mathrm{ft}^{\mathrm{ft}}$
Maximum ultimate shear at composite stage;
$\mathrm{V}_{\text {comp_u }}=\left(1.2 \times \mathrm{w}_{\left.\text {comp_D }+1.6 \times \mathrm{w}_{\text {comp_L }}\right) \times \mathrm{L} / 2+1.2 \times \mathrm{w}_{\mathrm{w}_{-} \text {par }} \times \mathrm{L} / 2+1.2 \times \mathrm{w}_{\text {w_perp }} \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2 \times 1 / 2=43.019 \mathrm{kips} .2}\right.$
Point of max. B.M. from nearest support; $\quad L_{B M _ \text {near }}=\mathrm{L} / 2=\mathbf{1 8 . 0 0} \mathrm{ft}$

Steel section check

Trial steel section;

W24X55

Plastic modulus of steel section;
$\mathrm{Z}_{\mathrm{x}}=134.00 \mathrm{in}^{3}$
Elastic modulus of steel section;
$\mathrm{S}_{\mathrm{x}}=114.00 \mathrm{in}^{3}$
Width to thickness ratio;
$\lambda_{f}=b_{f} /\left(2 \times t_{f}\right)=\mathbf{6 . 9 4 1}$

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.23	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$

Limiting width to thickness ratio (compact);	$\lambda_{\mathrm{pf}}=0.38 \times \sqrt{ }\left(\mathrm{E}_{\mathrm{S}} / \mathrm{F}_{\mathrm{y}}\right)=\mathbf{9 . 1 5 2}$
Limiting width to thickness ratio (noncompact);	$\lambda_{\mathrm{rf}}=\sqrt{ }\left(\mathrm{E}_{\mathrm{S}} / \mathrm{F}_{\mathrm{y}}\right)=\mathbf{2 4 . 0 8 3}$
Depth to thickness ratio $\left(\mathrm{h} / \mathrm{t}_{\mathrm{w}}\right) ;$	$\lambda_{\mathrm{w}}=\mathbf{5 4 . 6 0 0}$
Limiting depth to thickness ratio (compact);	$\lambda_{\mathrm{pw}}=3.76 \times \sqrt{ }\left(\mathrm{E}_{\mathrm{S}} / \mathrm{F}_{\mathrm{y}}\right)=\mathbf{9 0 . 5 5 3}$
Limiting depth to thickness ratio (noncompact);	$\lambda_{\mathrm{rw}}=5.70 \times \sqrt{ }\left(\mathrm{E}_{\mathrm{S}} / \mathrm{F}_{\mathrm{y}}\right)=\mathbf{1 3 7 . 2 7 4}$

Flange is compact
Depth to thickness ratio ($\mathrm{h} / \mathrm{t}_{\mathrm{w}}$);
$\lambda_{\mathrm{w}}=\mathbf{5 4 . 6 0 0}$
$\lambda_{\text {pw }}=3.76 \times \sqrt{ }\left(E_{S} / F_{y}\right)=\mathbf{9 0 . 5 5 3}$
Limiting depth to thickness ratio (noncompact);
$\lambda_{\mathrm{rw}}=5.70 \times \sqrt{ }\left(\mathrm{E}_{\mathrm{S}} / \mathrm{F}_{\mathrm{y}}\right)=\mathbf{1 3 7 . 2 7 4}$
Web is compact

Strength check at construction stage for flexure

Check for flexure
Plastic moment for steel section; $\quad \mathrm{M}_{\mathrm{p}}=\mathrm{F}_{\mathrm{y}} \times \mathrm{Z}_{\mathrm{x}}=\mathbf{5 5 8 . 3 3 3}$ kip_ft
Resistance factor for flexure;
$\phi_{\mathrm{b}}=\mathbf{0 . 9 0}$
Design flexural strength of steel section alone;
$\mathrm{M}_{\text {constr_ } \mathrm{n}}=\phi_{\mathrm{b}} \times \mathrm{M}_{\mathrm{p}}=\mathbf{5 0 2 . 5 0 0}$ kip_ft
Required flexural strength;
$\mathrm{M}_{\text {constr_u }}=\mathbf{1 5 7 . 8 0 1}$ kip_ft
PASS - Beam bending at construction stage loading

Strength check at construction stage for shear

Web area;
Web plate buckling coefficient;
Depth to thickness ratio ($\mathrm{h} / \mathrm{t}_{\mathrm{w}}$);
Web shear coefficient;
Resistant factor for shear;
Design shear strength;
Required shear strength;
$A_{w}=d \times t_{w}=9.322$ in 2
$\mathrm{k}_{\mathrm{v}}=5.34$
$\lambda_{\mathrm{w}}=54.600$
$\mathrm{C}_{\mathrm{v} 1}=\mathbf{1 . 0 0}$
$\phi_{\mathrm{v}}=0.9$
$\mathrm{V}_{\text {constr_n }}=\phi_{\mathrm{v}} \times\left(0.6 \times \mathrm{F}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{w}} \times \mathrm{C}_{\mathrm{v} 1}\right)=\mathbf{2 5 1 . 6 9 4} \mathrm{kips}$
$\mathrm{V}_{\text {constr_u }}=\mathbf{1 7 . 5 3 4}$ kips
PASS - Beam shear at construction stage loading

Design of steel anchors

Note - for non-uniform stud layouts a higher concentration of studs should be located towards the ends of the beam

Effective slab width of composite section;
Effective area of concrete flange;
Diameter of stud anchor;
Length of stud anchor after weld;
Specified tensile strength of stud anchor;
Cross section area of one stud anchor;
Maximum diameter permitted;

Point of max. B.M. from nearest support;
No. of ribs from points of zero to max moment;
No. of ribs with 1 stud per rib;
No. of ribs with 2 studs per rib;
No. of ribs with 3 studs per rib;
Total number of studs;
$\mathrm{b}=\min \left(\mathrm{L} / 8, \mathrm{~b}_{1} / 2\right)+\min \left(\mathrm{L} / 8, \mathrm{~b}_{2} / 2\right)=\mathbf{1 0 8 . 0 0 0}$ in
$\mathrm{A}_{\mathrm{c}}=\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right)=351.00 \mathrm{in}^{2}$
$\mathrm{dia}=\mathbf{0 . 7 5 0} \mathrm{in}$
$\mathrm{H}_{\mathrm{s}}=3.50$ in
$\mathrm{F}_{\mathrm{u}}=\mathbf{6 5} \mathrm{ksi}$
$\mathrm{A}_{\mathrm{sa}}=\pi \times \mathrm{dia}^{2} / 4=\mathbf{0 . 4 4 2} \mathrm{in}^{2}$
$\operatorname{dia}_{\text {max }}=2.5 \times \mathrm{t}_{\mathrm{f}}=\mathbf{1 . 2 6 3}$ in
PASS - Diameter of stud anchor provided is OK
$\mathrm{L}_{\text {BM_near }}=\mathbf{1 8 . 0 0} \mathrm{ft}$
rib $_{\text {numbers }}=\operatorname{int}\left(\mathrm{L}_{\text {BM_near }} / \operatorname{rib}_{\text {ccs }}-1\right)=\mathbf{1 7}$
$\mathrm{N}_{\mathrm{r} 1}=17$
$\mathrm{N}_{\mathrm{r} 2}=\mathbf{0}$
$\mathrm{N}_{\mathrm{r} 3}=\mathbf{0}$
$\mathrm{N}_{\text {prov }}=\mathrm{N}_{\mathrm{r} 1}+2 \times \mathrm{N}_{\mathrm{r} 2}+3 \times \mathrm{N}_{\mathrm{r} 3}=\mathbf{1 7}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.24	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{aligned} & \hline \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Group effect factor for 1 stud per rib;	$\mathrm{R}_{\mathrm{g} 1}=\mathbf{1 . 0 0}$
Group effect factor for 2 studs per rib;	$\mathrm{R}_{\mathrm{g} 2}=\mathbf{0 . 8 5}$
Group effect factor for 3 studs per rib;	$\mathrm{R}_{\mathrm{g} 3}=\mathbf{0 . 7 0}$
Value of $\mathrm{e}_{\text {mid-ht }}$ is less than 2 in (51 mm)	
Position effect factor for deck perpendicular;	$\mathrm{R}_{\mathrm{p}}=\mathbf{0 . 6 0}$
Nom. strength of one stud with 1 stud per rib;	$\mathrm{Q}_{\mathrm{n} 1}=\min \left(0.5 \times \mathrm{A}_{\text {sa }} \times \sqrt{ }\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}} \times \mathrm{E}_{\mathrm{c}}\right), \mathrm{R}_{\mathrm{g} 1} \times \mathrm{R}_{\mathrm{p}} \times \mathrm{A}_{\mathrm{sa}} \times \mathrm{F}_{\mathrm{u}}\right)=\mathbf{1 7 . 2 3 0} \mathbf{~ k i p s}$
Nom. strength of one stud with 2 studs per rib;	$\mathrm{Q}_{\mathrm{n} 2}=\min \left(0.5 \times \mathrm{A}_{\text {sa }} \times \sqrt{ }\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}} \times \mathrm{E}_{\mathrm{c}}\right), \mathrm{R}_{\mathrm{g} 2} \times \mathrm{R}_{\mathrm{p}} \times \mathrm{A}_{\text {sa }} \times \mathrm{F}_{\mathrm{u}}\right)=\mathbf{1 4 . 6 4 5} \mathrm{kips}$
Nom. strength of one stud with 3 studs per rib;	$\mathrm{Q}_{\mathrm{n} 3}=\min \left(0.5 \times \mathrm{A}_{\mathrm{sa}} \times \sqrt{ }\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}} \times \mathrm{E}_{\mathrm{c}}\right), \mathrm{R}_{\mathrm{g} 3} \times \mathrm{R}_{\mathrm{p}} \times \mathrm{A}_{\mathrm{sa}} \times \mathrm{F}_{\mathrm{u}}\right)=\mathbf{1 2 . 0 6 1} \mathrm{kips}$
Total strength of provided steel anchors;	$\mathrm{S}_{\mathrm{sc}}=\mathrm{N}_{\mathrm{r} 1} \times \mathrm{Q}_{\mathrm{n} 1}+2 \times \mathrm{N}_{\mathrm{r} 2} \times \mathrm{Q}_{\mathrm{n} 2}+3 \times \mathrm{N}_{\mathrm{r} 3} \times \mathrm{Q}_{\mathrm{n} 3}=292.90 \mathrm{kips}$
Resistance of concrete flange;	$\mathrm{C}_{\mathrm{cf}}=0.85 \times \mathrm{f}^{\prime}{ }_{\mathrm{c}} \times \mathrm{A}_{\mathrm{c}}=\mathbf{1 1 9 3 . 4 0 0 ~ k i p s}$
Resistance of steel beam;	$\mathrm{T}_{\mathrm{sb}}=\mathrm{A} \times \mathrm{F}_{\mathrm{y}}=\mathbf{8 1 0 . 0 0 0 ~ k i p s}$
Beam/slab interface shear force;	$\mathrm{C}=\min \left(\mathrm{C}_{\mathrm{cf}}, \mathrm{T}_{\mathrm{sb}}\right)=\mathbf{8 1 0 . 0 0 0}$ kips

Strength of studs is less than maximum interface shear force therefore partial composite action takes place

Strength check at partial composite action

Actual net tensile force ;
$\mathrm{V}_{\mathrm{h}}=\mathrm{C}=\mathbf{8 1 0 . 0 0 0} \mathrm{kips}$
Assuming plastic neutral axis at the bottom of the steel beam flange.

Resultant compressive force at flange bottom;
Net force at steel and concrete interface;
$\mathrm{P}_{\mathrm{yf}}=\mathrm{b}_{\mathrm{f}} \times \mathrm{t}_{\mathrm{f}} \times \mathrm{F}_{\mathrm{y}}=\mathbf{1 7 7 . 0 0 3} \mathrm{kips}$
$\mathrm{C}_{\mathrm{net}}=\mathrm{T}_{\mathrm{sb}}-2 \times \mathrm{P}_{\mathrm{yf}}=\mathbf{4 5 5 . 9 9 5} \mathrm{kips}$
PNA is in the web of the I Section
Shear connection force;
$\mathrm{F}_{\text {shear }}=\mathrm{S}_{\text {sc }}=\mathbf{2 9 2 . 9 0} \mathrm{kips}$
Total depth of concrete at full stress;
$\mathrm{d}_{\mathrm{c}}=\mathrm{F}_{\text {shear }} /\left(0.85 \times \mathrm{f}_{\mathrm{c}} \times \mathrm{b}\right)=\mathbf{0 . 7 9 8}$ in
Depth of compression from top of the steel flange; $t^{\prime}=A /\left(2 \times t_{w}\right)-b_{f} \times t_{f} / t_{w}-0.85 \times f^{\prime} / F_{y} \times b \times d_{c} /\left(2 \times t_{w}\right)+t_{f}=4.634$ in
Tension
Bottom flange component;
$\mathrm{F}_{\mathrm{bf}}=\mathrm{F}_{\mathrm{y}} \times \mathrm{b}_{\mathrm{f}} \times \mathrm{t}_{\mathrm{f}}=\mathbf{1 7 7 . 0 0 3} \mathrm{kips}$
Moment capacity of bottom flange;
Web component;
Moment capacity of web;
Compression
Web component;
Moment capacity of web;
Top flange component;
Moment capacity of top flange;
Concrete flange component;
Moment capacity of concrete flange;
Design flexural strength of beam;
Required flexural strength;
$\mathrm{M}_{\mathrm{bf}}=\mathrm{F}_{\mathrm{bf}} \times\left(\mathrm{d}-\left(\mathrm{t}_{\mathrm{f}} / 2\right)-\mathrm{t}^{\prime}\right)=\mathbf{2 7 6 . 0 3 0} \mathrm{kip}_{-} \mathrm{ft}$
$\mathrm{F}_{\text {web_t }}=\mathrm{F}_{\mathrm{y}} \times\left(\mathrm{A}-\left(2 \times \mathrm{b}_{\mathrm{f}} \times \mathrm{t}_{\mathrm{f}}\right)-\left(\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{f}}\right) \times \mathrm{t}_{\mathrm{w}}\right)=\mathbf{3 7 4 . 4 5 0} \mathbf{~ k i p s}$
$\mathrm{M}_{\text {web }_{-} \mathrm{t}}=\mathrm{F}_{\text {web }_{-} \mathrm{t}} \times\left(\mathrm{d}-\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{f}}\right) / 2=\mathbf{2 8 8 . 0 3 2} \mathbf{~ k i p _ f t}$
$\mathrm{F}_{\text {web_c }}=\mathrm{F}_{\mathrm{y}} \times\left(\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{f}}\right) \times \mathrm{t}_{\mathrm{w}}=\mathbf{8 1 . 5 4 5} \mathbf{~ k i p s}$
$M_{\text {web_c }^{\prime}}=F_{\text {web_c }} \times\left(\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{f}}\right) / 2=\mathbf{1 4 . 0 2 9}$ kip_ft
$\mathrm{F}_{\mathrm{tf}}=\mathrm{F}_{\mathrm{y}} \times \mathrm{b}_{\mathrm{f}} \times \mathrm{t}_{\mathrm{f}}=\mathbf{1 7 7 . 0 0 3} \mathrm{kips}$
$\mathrm{M}_{\mathrm{tf}}=\mathrm{F}_{\mathrm{tf}} \times\left(\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{f}} / 2\right)=\mathbf{6 4 . 6 2 6} \mathrm{kip} \mathrm{ft}^{\mathrm{ft}}$
$\mathrm{F}_{\mathrm{cf}}=0.85 \times \mathrm{f}^{\prime}{ }_{\mathrm{c}} \times \mathrm{b} \times \mathrm{d}_{\mathrm{c}}=\mathbf{2 9 2 . 9 0 4} \mathrm{kips}$
$\mathrm{M}_{\mathrm{cf}}=\mathrm{F}_{\mathrm{cf}} \times\left(\mathrm{t}-\mathrm{d}_{\mathrm{c}} / 2+\mathrm{t}\right.$ ' $)=\mathbf{2 3 1 . 5 1 8} \mathrm{kip} _\mathrm{ft}$
$\mathrm{M}_{\text {comp_n }}=\phi_{\mathrm{b}} \times\left(\mathrm{M}_{\text {bf }}+\mathrm{M}_{\text {web_t }}+\mathrm{M}_{\text {web_c }}+\mathrm{M}_{\mathrm{tf}}+\mathrm{M}_{\text {cf }}\right)=\mathbf{7 8 6 . 8 1 1}$ kip_ft
$\mathrm{M}_{\text {comp_u }}=\mathbf{3 8 7 . 1 6 6} \mathbf{~ k i p _ f t}$
PASS - Beam bending at partial composite stage

Check for shear
Design shear strength;
$\mathrm{V}_{\text {comp_n }}=\mathrm{V}_{\text {constr_n }}=\mathbf{2 5 1 . 6 9 4}$ kips

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev. 25	
	MSBA Design Development Submission					
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Required shear strength;

$\mathrm{V}_{\text {comp_u }}=43.019 \mathrm{kips}$
PASS - Beam shear at partial composite stage loading
Check for deflection (Commentary section I3.1)
Calculation of immediate construction stage deflection;

Deflection due to dead load;
Amount of beam camber;

Deflection due to construction live load;
Net total construction stage deflection;
$\Delta_{\text {short_D }}=5 \times \mathrm{w}_{\text {constr_D }} \times \mathrm{L}^{4} /\left(384 \times \mathrm{E}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{x}}\right)=\mathbf{0 . 5 2 6 2}$ in
$\Delta_{\text {camber }}=\mathbf{0 . 0 0 0}$ in
PASS - The camber is less than the construction stage dead load deflection

For short term loading:-
Short term modular ratio; $\quad n_{s}=E_{S} / E_{c}=\mathbf{1 1 . 8}$
Depth of neutral axis from top of concrete;
$\mathrm{y}_{\mathrm{s}}=\left[\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / \mathrm{n}_{\mathrm{s}} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / 2+\mathrm{A} \times(\mathrm{t}+\mathrm{d} / 2)\right] /\left[\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / \mathrm{n}_{\mathrm{s}}+\mathrm{A}\right]$
$y_{s}=7.051$ in
Moment of inertia of fully composite section;
$\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{x}}+\mathrm{A} \times\left(\mathrm{d} / 2+\mathrm{t}-\mathrm{y}_{\mathrm{s}}\right)^{2}+\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right)^{3} /\left(12 \times \mathrm{n}_{\mathrm{s}}\right)+\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / \mathrm{n}_{\mathrm{s}} \times\left(\mathrm{y}_{\mathrm{s}}-\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / 2\right)^{2}$

$$
\mathrm{I}_{\mathrm{s}}=\mathbf{3 8 7 5} \mathrm{in}^{4}
$$

Effective mt of inertia for partially composite;
Proportion of live load which is short term;
$\mathrm{I}_{\mathrm{s}_{_} \text {eff }}=0.75 \times\left[\mathrm{I}_{\mathrm{x}}+\sqrt{ }\left(\mathrm{F}_{\text {shear }} / \mathrm{C}\right) \times\left(\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{\mathrm{x}}\right)\right]=; \mathbf{2 1 5 1 . 2} ;$ in 4

Deflection due to short term live load;
$\mathrm{r}_{\mathrm{L}_{-} \mathrm{s}}=67 \%$

For long term loading:-
Long term concrete modulus as \% of short term; $\quad r_{E_{-} 1}=\mathbf{5 0} \%$
Long term modular ratio;
$\mathrm{n}_{1}=\mathrm{E}_{\mathrm{S}} /\left(\mathrm{E}_{\mathrm{c}} \times \mathrm{r}_{\mathrm{E}_{-}}\right)=\mathbf{2 3 . 5}$
Depth of neutral axis from top of concrete;
$\mathrm{y}_{1}=\left[\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / \mathrm{n}_{1} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / 2+\mathrm{A} \times(\mathrm{t}+\mathrm{d} / 2)\right] /\left[\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / \mathrm{n}_{1}+\mathrm{A}\right]$

$$
y_{1}=9.653 \mathrm{in}
$$

Moment of inertia of fully composite section;
$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{x}}+\mathrm{A} \times\left(\mathrm{d} / 2+\mathrm{t}-\mathrm{y}_{\mathrm{l}}\right)^{2}+\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right)^{3} /\left(12 \times \mathrm{n}_{\mathrm{l}}\right)+\mathrm{b} \times\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / \mathrm{n}_{1} \times\left(\mathrm{y}_{\mathrm{l}}-\left(\mathrm{t}-\mathrm{h}_{\mathrm{r}}\right) / 2\right)^{2}$
$\mathrm{I}_{1}=\mathbf{3 2 1 2} \mathrm{in}^{4}$
Effective mt of inertia for partially composite; $\quad \mathrm{I}_{\mathrm{I}_{-} \text {eff }}=0.75 \times\left[\mathrm{I}_{\mathrm{x}}+\sqrt{ }\left(\mathrm{F}_{\text {shear }} / \mathrm{C}\right) \times\left(\mathrm{I}_{1}-\mathrm{I}_{\mathrm{x}}\right)\right]=\mathbf{1 8 5 2 . 1} \mathrm{in}^{4}$
Proportion of live load which is long term;
$\mathrm{r}_{\mathrm{L}_{-} 1}=1-\mathrm{r}_{\mathrm{L}_{-} \mathrm{s}}=\mathbf{3 3} \%$
Deflection due to long term live load; $\quad \Delta_{\mathrm{L}_{-} 1}=5 \times \mathrm{r}_{\mathrm{L}_{-} 1} \times \mathrm{w}_{\text {comp_L }} \times \mathrm{L}^{4} /\left(384 \times \mathrm{E}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{I}_{-} \text {eff }}\right)=\mathbf{0 . 2 3 2 2}$ in
Dead load due to parallel wall \& superimp. dead; $\quad \mathrm{w}_{\mathrm{D} _ \text {part }}=\mathrm{w}_{\mathrm{w} _ \text {par }}+\left(\mathrm{w}_{\text {serv }} \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2\right)=\mathbf{1 5 0 . 0 0 0 0} \mathrm{lb} / \mathrm{ft}$
Long term deflection due to superimposed dead load (after concrete has cured):-
Wall parallel to span and superimposed dead;

$$
\begin{aligned}
& \Delta_{4}=5 \times\left(\mathrm{w}_{\mathrm{D} _ \text {part }}\right) \times \mathrm{L}^{4} /\left(384 \times \mathrm{E}_{\mathrm{S}} \times \mathrm{I}_{1 _ \text {eff }}\right)=\mathbf{0 . 1 0 5 5} \text { in } \\
& \Delta_{5}=\left(\mathrm{w}_{\mathrm{w} _ \text {perp }} \times\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2\right) \times \mathrm{L}^{3} /\left(48 \times \mathrm{E}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{I}_{_} \text {eff }}\right)=\mathbf{0 . 0 0 0 0} \text { in }
\end{aligned}
$$

Combined deflections

Net total construction stage deflection;
Net total long term deflection;

$$
\begin{aligned}
& \Delta_{\text {short }}=\Delta_{\text {short_D }}+\Delta_{2}-\Delta_{\text {camber }}=\mathbf{0 . 7 1 9} \text { in } \\
& \Delta_{\text {long }}=\Delta_{\text {short_D }}+\Delta_{\mathrm{L}_{-} \mathrm{s}}+\Delta_{\mathrm{L}_{-} 1}+\Delta_{4}+\Delta_{5}-\Delta_{\text {camber }}=\mathbf{1 . 2 7 0} \text { in }
\end{aligned}
$$

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.26	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	Date 07/27/2022

$$
\begin{array}{ll}
\text { Combined short and long term live load deflectn; } & \Delta_{\text {live }}=\Delta_{\mathrm{L}_{-} \mathrm{s}}+\Delta_{\mathrm{L}_{-} 1}=\mathbf{0 . 6 3 8} \text { in } \\
\text { Net long term dead and super imposed dead defln; } & \Delta_{\text {dead }}=\Delta_{\text {short_ }}+\Delta_{4}+\Delta_{5}-\Delta_{\text {camber }}=\mathbf{0 . 6 3 2} \text { in } \\
\text { Post composite deflection; } & \Delta_{\text {comp }}=\Delta_{\mathrm{L}_{-} \mathrm{s}}+\Delta_{\mathrm{L}_{-} 1}+\Delta_{4}+\Delta_{5}=\mathbf{0 . 7 4 4} \text { in } \\
\text { Allowable max deflection; } & \Delta_{\text {Allow }}=\mathbf{1 . 5 0 0} \text { in }
\end{array}
$$

PASS - Deflection less than allowable

Arrangement of steel anchor

Note - for non-uniform stud layouts a higher concentration of studs should be located towards the ends of the beam;

3. Sample Steel Column

Column and loading details

Column details

Column section;

HSS $12 \times 12 \times 3 / 8$

Design loading

Required axial strength;
Moment about x axis at end 1 ;
Moment about x axis at end 2;
$\mathrm{P}_{\mathrm{r}}=\mathbf{2 5 0}$ kips; (Compression)
$\mathrm{M}_{\mathrm{x} 1}=\mathbf{0} .0$ kips_ft
$\mathrm{M}_{\mathrm{x} 2}=\mathbf{0} .0 \mathrm{kips} \mathrm{ft}$

Maximum moment about x axis;
Moment about y axis at end 1;
Moment about y axis at end 2;
$\mathrm{M}_{\mathrm{x}}=\max \left(\operatorname{abs}\left(\mathrm{M}_{\mathrm{x} 1}\right), \operatorname{abs}\left(\mathrm{M}_{\mathrm{x} 2}\right)\right)=\mathbf{0 . 0} \mathrm{kips} \mathrm{ft}$
$\mathrm{M}_{\mathrm{y} 1}=\mathbf{0 . 0}$ kips_ft
$\mathrm{M}_{\mathrm{y} 2}=\mathbf{0} .0$ kips_ft

Maximum moment about y axis;
Maximum shear force parallel to y axis;
Maximum shear force parallel to x axis;
$\mathrm{M}_{\mathrm{y}}=\max \left(\operatorname{abs}\left(\mathrm{M}_{\mathrm{y} 1}\right), \operatorname{abs}\left(\mathrm{M}_{\mathrm{y} 2}\right)\right)=\mathbf{0 . 0}$ kips_ft
$\mathrm{V}_{\mathrm{ry}}=\mathbf{0 . 0} \mathrm{kips}$
$\mathrm{V}_{\mathrm{rx}}=\mathbf{0 . 0} \mathrm{kips}$

Material details

Steel grade;
Yield strength;
A500 Gr. C
$\mathrm{F}_{\mathrm{y}}=\mathbf{5 0} \mathrm{ksi}$
Ultimate strength;
$\mathrm{F}_{\mathrm{u}}=\mathbf{6 2} \mathrm{ksi}$
Modulus of elasticity;
Shear modulus of elasticity;
$\mathrm{E}=29000 \mathrm{ksi}$
$\mathrm{G}=\mathbf{1 1 2 0 0} \mathrm{ksi}$

Unbraced lengths

For buckling about x axis;
$\mathrm{L}_{\mathrm{x}}=240$ in
For buckling about y axis;
$\mathrm{L}_{\mathrm{y}}=\mathbf{2 4 0}$ in
For torsional buckling;
$L_{z}=240$ in

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.27	
	MSBA Design Development Submission					
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Effective length factors

For buckling about x axis;	$\mathrm{K}_{\mathrm{x}}=\mathbf{1 . 0 0}$
For buckling about y axis;	$\mathrm{K}_{\mathrm{y}}=\mathbf{1 . 0 0}$
For torsional buckling;	$\mathrm{K}_{\mathrm{z}}=\mathbf{1 . 0 0}$

Section classification

Section classification for local buckling (cl. B4)

Critical flange width;
$\mathrm{b}=\mathrm{b}_{\mathrm{f}}-3 \times \mathrm{t}=\mathbf{1 0 . 9 5 3}$ in
Critical web width;
$\mathrm{h}=\mathrm{d}-3 \times \mathrm{t}=\mathbf{1 0 . 9 5 3}$ in
Width to thickness ratio of flange (compression);
$\lambda_{f_{\mathrm{f}}}=\mathrm{b} / \mathrm{t}=\mathbf{3 1 . 3 8 4}$
Width to thickness ratio of web (compression); $\quad \lambda_{w_{-} \mathrm{c}}=\mathrm{h} / \mathrm{t}=\mathbf{3 1 . 3 8 4}$
Width to thickness ratio of flange (major flexure);
Width to thickness ratio of web (major flexure);
$\lambda_{f-f x}=b / t=31.384$

Width to thickness ratio of flange (minor flexure);
Width to thickness ratio of web (minor flexure);
$\lambda_{w_{-} \mathrm{fx}}=\mathrm{h} / \mathrm{t}=\mathbf{3 1 . 3 8 4}$

Compression
Limit for nonslender section;
$\lambda_{r_{-} \mathrm{c}}=1.40 \times \sqrt{ }\left(\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right)=\mathbf{3 3 . 7 1 6}$
The section is nonslender in compression

Slenderness

Member slenderness

Slenderness ratio about x axis;
$\mathrm{SR}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{x}} / \mathrm{r}_{\mathrm{x}}=\mathbf{5 0 . 7}$
Slenderness ratio about y axis;
$\mathrm{SR}_{\mathrm{y}}=\mathrm{K}_{\mathrm{y}} \times \mathrm{L}_{\mathrm{y}} / \mathrm{r}_{\mathrm{y}}=\mathbf{5 0 . 7}$

Reduction factor for slender elements

Reduction factor for slender elements (E7)

The section does not contain any slender elements therefore:-
Slender element reduction factor;
$\mathrm{Q}=\mathbf{1 . 0}$

Compressive strength

Flexural buckling about x axis (cl. E3)

Elastic critical buckling stress;
Reduction factor;
Flexural buckling stress about x axis;
Nominal flexural buckling strength;
Flexural buckling about y axis (cl. E3)
Elastic critical buckling stress;
Reduction factor;
Flexural buckling stress about y axis;
$\mathrm{F}_{\mathrm{ex}}=\left(\pi^{2} \times \mathrm{E}\right) /\left(\mathrm{SR}_{\mathrm{x}}\right)^{2}=\mathbf{1 1 1 . 2} \mathrm{ksi}$
$\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}=\mathbf{1 . 0 0 0}$
$\mathrm{F}_{\text {crx }}=\mathrm{Q}_{\mathrm{x}} \times\left(0.658^{\mathrm{Qx} \times F y / F e x}\right) \times \mathrm{F}_{\mathrm{y}}=\mathbf{4 1 . 4} \mathrm{ksi}$
$\mathrm{P}_{\mathrm{nx}}=\mathrm{F}_{\mathrm{crx}} \times \mathrm{A}_{\mathrm{g}}=\mathbf{6 6 2 . 7} \mathrm{kips}$
$\mathrm{F}_{\text {ey }}=\left(\pi^{2} \times \mathrm{E}\right) /\left(\mathrm{SR}_{\mathrm{y}}\right)^{2}=\mathbf{1 1 1 . 2} \mathrm{ksi}$
$\mathrm{Q}_{\mathrm{y}}=\mathrm{Q}=\mathbf{1 . 0 0 0}$
$\mathrm{F}_{\text {cry }}=\mathrm{Q}_{\mathrm{y}} \times\left(0.658^{\mathrm{Qy} \times \mathrm{Fy} / \mathrm{Fey}}\right) \times \mathrm{F}_{\mathrm{y}}=\mathbf{4 1 . 4} \mathrm{ksi}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.28	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{aligned} & \hline \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Nominal flexural buckling strength;

Design compressive strength (cl.E1)

Resistance factor for compression;
Design compressive strength;

$$
\mathrm{P}_{\mathrm{ny}}=\mathrm{F}_{\text {cry }} \times \mathrm{A}_{\mathrm{g}}=\mathbf{6 6 2 . 7} \mathrm{kips}
$$

$$
\phi_{\mathrm{c}}=\mathbf{0 . 9 0}
$$

$$
\mathrm{P}_{\mathrm{c}}=\phi_{\mathrm{c}} \times \min \left(\mathrm{P}_{\mathrm{nx}}, \mathrm{P}_{\mathrm{ny}}\right)=\mathbf{5 9 6 . 5} \mathrm{kips}
$$

PASS - The design compressive strength exceeds the required compressive strength

4. Sample Isolated Reinforced Concrete Column Footing

Footing Analysis

[In accordance with ACI318-19]
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	243.4			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	3.803	4	0.951	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	173.7	487.6	0.356	Pass
Moment, positive, y-direction	kip_ft	173.7	466.3	0.372	Pass
Shear, one-way, x-direction	kips	52.9	104.8	0.505	Pass
Shear, one-way, y-direction	kips	52.9	101.8	0.520	Pass
Shear, two-way, Col 1	psi	73.546	189.737	0.388	Pass
Min.area of reinf, bot., x-direction	in 2	4.147	5.400		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	11.1		Pass
Min.area of reinf, bot., y-direction	in 2	4.147	5.400		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	11.1		Pass

Pad footing details

Length of footing;
Width of footing;
$\mathrm{L}_{\mathrm{x}}=\mathbf{8} \mathrm{ft}$
$\mathrm{L}_{\mathrm{y}}=\mathbf{8} \mathrm{ft}$
Footing area;
$\mathrm{A}=\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}=64 \mathrm{ft}^{2}$
Depth of footing;
Depth of soil over footing;
$\mathrm{h}=\mathbf{2 4}$ in

Density of concrete;
$\mathrm{h}_{\text {soil }}=18$ in
$\gamma_{\text {conc }}=\mathbf{1 5 0 . 0} \mathrm{lb} / \mathrm{ft}^{3}$

Engineers Design Grouplac.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.29	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{aligned} & \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Column no. 1 details

Length of column;
Width of column;
position in x -axis;
position in y -axis;

Soil Properties

Gross allowable bearing pressure;
Density of soil;
Angle of internal friction;
Design base friction angle;
Coefficient of base friction;
Design wall friction angle;
Passive pressure coefficient (Coulomb);

Dead surcharge load;
Live surcharge load;
Self weight;
Soil weight;

Column no. 1 loads

Dead load in z;
Live load in z;
Snow load in z;

Footing analysis for soil and stability

Load combinations per ASCE 7-10
1.0D (0.419)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.835)$
$1.0 \mathrm{D}+1.0 \mathrm{~S}(0.712)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}(0.951)$
Combination 7 results: $1.0 \mathrm{D}+\mathbf{0 . 7 5} \mathrm{L}+\mathbf{0 . 7 5 S}$

Forces on footing

Force in z-axis;
$\mathrm{F}_{\mathrm{dz}}=\gamma_{\mathrm{D}} \times \mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}+\mathrm{F}_{\mathrm{Dsur}}\right)+\gamma_{\mathrm{L}} \times \mathrm{A} \times \mathrm{F}_{\mathrm{Lsur}}+\gamma_{\mathrm{D}} \times \mathrm{F}_{\mathrm{Dz} 1}+\gamma_{\mathrm{L}} \times \mathrm{F}_{\mathrm{Lz} 1}$ $+\gamma_{\mathrm{S}} \times \mathrm{F}_{\mathrm{Sz} 1}=\mathbf{2 4 3 . 4} \mathbf{~ k i p s}$

Engineers Design Group inc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.30	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Moments on footing

Moment in x -axis, about x is 0 ;

Moment in y-axis, about y is 0 ;

Uplift verification

Vertical force;
$\mathrm{M}_{\mathrm{dx}}=\gamma_{\mathrm{D}} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}+\mathrm{F}_{\mathrm{Dsur}}\right) \times \mathrm{L}_{\mathrm{x}} / 2\right)+\gamma_{\mathrm{L}} \times \mathrm{A} \times \mathrm{F}_{\mathrm{Lsur}} \times \mathrm{L}_{\mathrm{x}} / 2+\gamma_{\mathrm{D}}$
$\times\left(\mathrm{F}_{\mathrm{Dz} 1} \times \mathrm{x}_{1}\right)+\gamma_{\mathrm{L}} \times\left(\mathrm{F}_{\mathrm{Lz} 1} \times \mathrm{x}_{1}\right)+\gamma_{\mathrm{S}} \times\left(\mathrm{F}_{\mathrm{Sz} 1} \times \mathrm{x}_{1}\right)=\mathbf{9 7 3 . 5} \mathrm{kip} \mathrm{ft}$
$M_{d y}=\gamma_{D} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}+\mathrm{F}_{\mathrm{Dsur}}\right) \times \mathrm{L}_{\mathrm{y}} / 2\right)+\gamma_{\mathrm{L}} \times \mathrm{A} \times \mathrm{F}_{\mathrm{Lsur}} \times \mathrm{L}_{\mathrm{y}} / 2+\gamma_{\mathrm{D}}$ $\times\left(\mathrm{F}_{\mathrm{Dz} 1} \times \mathrm{y}_{1}\right)+\gamma_{\mathrm{L}} \times\left(\mathrm{F}_{\mathrm{Lz} 1} \times \mathrm{y}_{1}\right)+\gamma_{\mathrm{S}} \times\left(\mathrm{F}_{\mathrm{Sz} 1} \times \mathrm{y}_{1}\right)=\mathbf{9 7 3 . 5} \mathrm{kip} \mathrm{ft}$
$\mathrm{F}_{\mathrm{d} z}=\mathbf{2 4 3 . 3 7} \mathrm{kips}$
PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x -axis;
Eccentricity of base reaction in y-axis;

Pad base pressures

Minimum base pressure;
Maximum base pressure;

Allowable Bearing Capacity

Allowable bearing capacity;

Footing Design

[In accordance with ACI318-19]

Material details

Compressive strength of concrete;
Yield strength of reinforcement;
Compression-controlled strain limit (21.2.2);
Cover to top of footing;
Cover to side of footing;
Cover to bottom of footing;
Concrete type;
Concrete modification factor;
Column type;
$\mathrm{q}_{\text {allow }}=\mathrm{q}_{\text {allow_Gross }}=4 \mathrm{ksf}$
$\mathrm{q}_{\text {max }} / \mathrm{q}_{\text {allow }}=\mathbf{0 . 9 5 1}$
PASS - Allowable bearing capacity exceeds design base pressure
$\mathrm{e}_{\mathrm{dx}}=\mathrm{M}_{\mathrm{dx}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{x}} / 2=\mathbf{0}$ in
$\mathrm{e}_{\mathrm{dy}}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0}$ in
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{3 . 8 0 3} \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{3 . 8 0 3} \mathrm{ksf}$
$\mathrm{q}_{3}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{3 . 8 0 3} \mathrm{ksf}$
$\mathrm{q}_{4}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{3 . 8 0 3} \mathrm{ksf}$
$\mathrm{q}_{\text {min }}=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=\mathbf{3 . 8 0 3} \mathrm{ksf}$
$\mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=\mathbf{3 . 8 0 3} \mathrm{ksf}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.31	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Analysis and design of concrete footing

Load combinations per ASCE 7-10

1.4D (0.212)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}(0.520)$
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on footing

Ultimate force in z-axis;

Moments on footing

Ultimate moment in x -axis, about x is 0 ;

Ultimate moment in y-axis, about y is 0 ;

Eccentricity of base reaction

Eccentricity of base reaction in x-axis;
Eccentricity of base reaction in y-axis;

Pad base pressures

Minimum ultimate base pressure;
Maximum ultimate base pressure;

Moment design, \mathbf{x} direction, positive moment
Ultimate bending moment;
Tension reinforcement provided;
Area of tension reinforcement provided;
Minimum area of reinforcement (8.6.1.1);

Maximum spacing of reinforcement (8.7.2.2);

Depth to tension reinforcement;
Depth of compression block;
Neutral axis factor;
Depth to neutral axis;
Strain in tensile reinforcement;
Minimum tensile strain(8.3.3.1);
$\mathrm{e}_{\mathrm{ux}}=\mathrm{M}_{\mathrm{ux}} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{x}} / 2=\mathbf{0}$ in
$\mathrm{e}_{\mathrm{uy}}=\mathrm{M}_{\mathrm{uy}} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0}$ in
$\mathrm{q}_{\mathrm{u} 1}=\mathrm{F}_{\mathrm{uz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{ux}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{4 . 6 7 2} \mathrm{ksf}$
$\mathrm{q}_{\mathrm{u} 2}=\mathrm{F}_{\mathrm{uz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{ux}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=4.672 \mathrm{ksf}$
$\mathrm{q}_{\mathrm{u} 3}=\mathrm{F}_{\mathrm{uz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{ux}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{4 . 6 7 2} \mathrm{ksf}$
$\mathrm{q}_{\mathrm{u} 4}=\mathrm{F}_{\mathrm{uz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{ux}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=4.672 \mathrm{ksf}$
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=4.672 \mathrm{ksf}$
$\mathrm{q}_{\mathrm{umax}}=\max \left(\mathrm{q}_{\mathrm{u} 1}, \mathrm{q}_{\mathrm{u} 2}, \mathrm{q}_{\mathrm{u} 3}, \mathrm{q}_{\mathrm{u} 4}\right)=4.672 \mathrm{ksf}$
$\mathrm{M}_{\text {u.x.max }}=\mathbf{1 7 3 . 6 7 9}$ kip_ft
9 No. 7 bottom bars (11.1 in c/c)
$\mathrm{A}_{\text {sx.bot.prov }}=5.4 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s} . \min }=0.0018 \times \mathrm{L}_{\mathrm{y}} \times \mathrm{h}=4.147 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$\mathrm{s}_{\max }=\min (2 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
$F_{u z}=\gamma_{D} \times \mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}+\mathrm{F}_{\mathrm{Dsur}}\right)+\gamma_{\mathrm{L}} \times \mathrm{A} \times \mathrm{F}_{\mathrm{Lsur}}+\gamma_{\mathrm{D}} \times \mathrm{F}_{\mathrm{Dz} 1}+\gamma_{\mathrm{L}} \times \mathrm{F}_{\mathrm{Lz} 1}$ $=299.0 \mathrm{kips}$
$\mathrm{M}_{\mathrm{ux}}=\gamma_{\mathrm{D}} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}+\mathrm{F}_{\mathrm{Dsur}}\right) \times \mathrm{L}_{\mathrm{x}} / 2\right)+\gamma_{\mathrm{L}} \times \mathrm{A} \times \mathrm{F}_{\mathrm{Lsur}} \times \mathrm{L}_{\mathrm{x}} / 2+\gamma_{\mathrm{D}}$ $\times\left(\mathrm{F}_{\mathrm{Dz} 1} \times \mathrm{x}_{1}\right)+\gamma_{\mathrm{L}} \times\left(\mathrm{F}_{\mathrm{Lz1}} \times \mathrm{x}_{1}\right)=\mathbf{1 1 9 6 . 1}$ kip_ft
$\mathrm{M}_{\mathrm{uy}}=\gamma_{\mathrm{D}} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}+\mathrm{F}_{\mathrm{Dsur}}\right) \times \mathrm{L}_{\mathrm{y}} / 2\right)+\gamma_{\mathrm{L}} \times \mathrm{A} \times \mathrm{F}_{\mathrm{Lsur}} \times \mathrm{L}_{\mathrm{y}} / 2+\gamma_{\mathrm{D}}$
$\times\left(\mathrm{F}_{\mathrm{Dz} 1} \times \mathrm{y}_{1}\right)+\gamma_{\mathrm{L}} \times\left(\mathrm{F}_{\mathrm{Lz} 1} \times \mathrm{y}_{1}\right)=\mathbf{1 1 9 6 . 1}$ kip_ft
$\mathrm{d}=\mathrm{h}-\mathrm{c}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }} / 2=\mathbf{2 0 . 5 6 2}$ in
$\mathrm{a}=\mathrm{A}_{\text {sx.bot.prov }} \times \mathrm{f}_{\mathrm{y}} /\left(0.85 \times \mathrm{f}_{\mathrm{c}} \times \mathrm{L}_{\mathrm{y}}\right)=\mathbf{0 . 9 9 3}$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=\mathbf{1 . 1 6 8}$ in
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 4 9 8 2}$
$\varepsilon_{\text {min }}=\varepsilon_{\text {ty }}+0.003=\mathbf{0 . 0 0 5 0 0}$
PASS - Tensile strain exceeds minimum required

Engineers Design Grouplic.					Job Ref. $2019-091$	
	Section				Sheet no./rev.	
	MSBA Design Development Submission				32	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Nominal moment capacity;
 Flexural strength reduction factor;
 Design moment capacity;
 One-way shear design, x direction

Ultimate shear force;
Depth to reinforcement;
Size effect factor (22.5.5.1.3);
Ratio of longitudinal reinforcement;
Shear strength reduction factor;
Nominal shear capacity (Eq. 22.5.5.1);

Design shear capacity;

Moment design, y direction, positive moment
Ultimate bending moment;
Tension reinforcement provided;
Area of tension reinforcement provided;
Minimum area of reinforcement (8.6.1.1);

Maximum spacing of reinforcement (8.7.2.2);

Depth to tension reinforcement;
Depth of compression block;
Neutral axis factor;
Depth to neutral axis;
Strain in tensile reinforcement;
Minimum tensile strain(8.3.3.1);

Nominal moment capacity;
Flexural strength reduction factor;
Design moment capacity;
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sx.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=\mathbf{5 4 1 . 7 8 7} \mathrm{kip} _\mathrm{ft}$
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=\mathbf{0 . 9 0 0}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=487.608 \mathrm{kip} _\mathrm{ft}$
$\mathrm{M}_{\mathrm{u} . \mathrm{x} . \max } / \phi \mathrm{M}_{\mathrm{n}}=\mathbf{0 . 3 5 6}$
PASS - Design moment capacity exceeds ultimate moment load
$\mathrm{V}_{\mathrm{u} . \mathrm{X}}=\mathbf{5 2 . 9 1 8} \mathrm{kips}$
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{c}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }} / 2=\mathbf{2 0 . 5 6 2}$ in
$\lambda_{\mathrm{s}}=1$
$\rho_{\mathrm{w}}=\mathrm{A}_{\text {sx.bot.prov }} /\left(\mathrm{L}_{\mathrm{y}} \square \mathrm{d}_{\mathrm{v}}\right)=\mathbf{0 . 0 0 2 7 4}$
$\phi_{\mathrm{v}}=\mathbf{0 . 7 5}$
$\mathrm{V}_{\mathrm{n}}=\min \left(8 \times \lambda_{\mathrm{s}} \times \lambda \times\left(\rho_{\mathrm{w}}\right)^{1 / 3} \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right) \times \mathrm{L}_{\mathrm{y}} \times \mathrm{d}_{\mathrm{v}}, 5 \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)\right.$
$\left.\times \mathrm{L}_{\mathrm{y}} \times \mathrm{d}_{\mathrm{v}}\right)=139.685 \mathrm{kips}$
$\phi V_{n}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=104.764 \mathrm{kips}$
$\mathrm{V}_{\mathrm{u} . \mathrm{X}} / \phi \mathrm{V}_{\mathrm{n}}=\mathbf{0 . 5 0 5}$
PASS - Design shear capacity exceeds ultimate shear load
$M_{\text {u.y. } \max }=173.679 \mathrm{kip}$ ft
9 No. 7 bottom bars (11.1 inc c)
$\mathrm{A}_{\text {sy.bot.prov }}=5.4 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s} . \min }=0.0018 \times \mathrm{L}_{\mathrm{x}} \times \mathrm{h}=4.147 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
$\mathrm{s}_{\text {max }}=\min (2 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
$\mathrm{d}=\mathrm{h}-\mathrm{c}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \mathrm{bot}} / 2=19.687$ in
$\mathrm{a}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} /\left(0.85 \times \mathrm{f}_{\mathrm{c}}^{\prime} \times \mathrm{L}_{\mathrm{x}}\right)=\mathbf{0 . 9 9 3}$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=\mathbf{1 . 1 6 8}$ in
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 4 7 5 7}$
$\varepsilon_{\text {min }}=\varepsilon_{\text {ty }}+0.003=\mathbf{0 . 0 0 5 0 0}$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=\mathbf{5 1 8 . 1 6 2} \mathrm{kip} \mathrm{ft}$
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=\mathbf{0 . 9 0 0}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=466.346 \mathrm{kip} \mathrm{ft}$
$\mathrm{M}_{\text {u. } . \text { max }} / \phi \mathrm{M}_{\mathrm{n}}=\mathbf{0 . 3 7 2}$
PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction
Ultimate shear force;
$\mathrm{V}_{\mathrm{u} . \mathrm{y}}=52.918 \mathrm{kips}$

Engineers Design Group inc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Depth to reinforcement;
Size effect factor (22.5.5.1.3);
Ratio of longitudinal reinforcement;
Shear strength reduction factor;
Nominal shear capacity (Eq. 22.5.5.1);

Design shear capacity;
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{c}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=\mathbf{1 9 . 6 8 7} \mathrm{in}$
$\lambda_{\mathrm{s}}=\mathbf{1}$
$\rho_{\mathrm{w}}=\mathrm{A}_{\text {sy.bot.prov }} /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=\mathbf{0 . 0 0 2 8 6}$
$\phi_{\mathrm{v}}=\mathbf{0 . 7 5}$
$\mathrm{V}_{\mathrm{n}}=\min \left(8 \times \lambda_{\mathrm{s}} \times \lambda \times\left(\rho_{\mathrm{w}}\right)^{1 / 3} \times ل\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}, 5 \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)\right.$
$\left.\times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=\mathbf{1 3 5 . 6 9 4} \mathrm{kips}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=\mathbf{1 0 1 . 7 7} \mathrm{kips}$
$\mathrm{V}_{\mathrm{u} . \mathrm{y}} / \phi \mathrm{V}_{\mathrm{n}}=\mathbf{0 . 5 2 0}$
\quad PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement;
Shear perimeter length (22.6.4);
Shear perimeter width (22.6.4);
Shear perimeter (22.6.4);
Shear area;
Surcharge loaded area;
Ultimate bearing pressure at center of shear area;
Ultimate shear load;

Ultimate shear stress from vertical load;
Column geometry factor (Table 22.6.5.2);
Column location factor (22.6.5.3);
Size effect factor (22.5.5.1.3);
Concrete shear strength (22.6.5.2);

Shear strength reduction factor;
Nominal shear stress capacity (Eq. 22.6.1.2);
Design shear stress capacity (8.5.1.1(d));
$\mathrm{d}_{\mathrm{v} 2}=\mathbf{2 0 . 1 2 5}$ in
$1_{\mathrm{xp}}=\mathbf{3 6 . 1 2 5}$ in
$1_{y p}=\mathbf{3 6 . 1 2 5}$ in
$\mathrm{b}_{\mathrm{o}}=2 \times\left(\mathrm{l}_{\mathrm{x} 1}+\mathrm{d}_{\mathrm{v} 2}\right)+2 \times\left(\mathrm{l}_{\mathrm{y} 1}+\mathrm{d}_{\mathrm{v} 2}\right)=\mathbf{1 4 4 . 5 0 0}$ in
$\mathrm{A}_{\mathrm{p}}=1_{\mathrm{x}, \text { perim }} \times 1_{\mathrm{y} \text {,perim }}=\mathbf{1 3 0 5 . 0 1 6}$ in 2
$\mathrm{A}_{\text {sur }}=\mathrm{A}_{\mathrm{p}}-\mathrm{l}_{\mathrm{x} 1} \times \mathrm{l}_{\mathrm{y} 1}=\mathbf{1 0 4 9 . 0 1 6}$ in 2
$\mathrm{q}_{\text {up.avg }}=\mathbf{4 . 6 7 2 \mathrm { ksf }}$
$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{\text {Lz1 }}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}+\gamma_{D} \times A_{\text {sur }} \times$
$\mathrm{F}_{\text {Dsur }}+\gamma_{\mathrm{L}} \times \mathrm{A}_{\text {sur }} \times \mathrm{F}_{\text {Lsur }}-\mathrm{q}_{\text {up.avg }} \times \mathrm{A}_{\mathrm{p}}=\mathbf{2 1 3 . 8 7 7} \mathrm{kips}$
$\mathrm{v}_{\mathrm{ug}}=\max \left(\mathrm{F}_{\mathrm{up}} /\left(\mathrm{b}_{\mathrm{o}} \square \mathrm{d}_{\mathrm{v} 2}\right), 0 \mathrm{psi}\right)=\mathbf{7 3 . 5 4 6} \mathrm{psi}$
$\beta=1_{\mathrm{y} 1} / \mathrm{l}_{\mathrm{x} 1}=\mathbf{1 . 0 0}$
$\alpha_{\mathrm{s}}=40$
$\lambda_{\mathrm{s}}=1$
$\mathrm{v}_{\mathrm{cpa}}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=\mathbf{3 7 9 . 4 7 3} \mathrm{psi}$
$\mathrm{v}_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=\mathbf{4 7 8 . 8 2 8} \mathrm{psi}$
$\mathrm{v}_{\mathrm{cpc}}=4 \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{v}_{\mathrm{cpa}}, \mathrm{v}_{\mathrm{cpb}}, \mathrm{v}_{\mathrm{cpc}}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi_{\mathrm{v}}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi \mathrm{v}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{v}_{\mathrm{n}}=189.737 \mathrm{psi}$
$\mathrm{v}_{\mathrm{ug}} / \phi \mathrm{v}_{\mathrm{n}}=\mathbf{0 . 3 8 8}$
PASS - Design shear stress capacity exceeds ultimate shear stress load

Engineers Design Groupinc.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.34	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by	$\begin{array}{\|l} \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	Date $07 / 27 / 2022$

5. Sample Continuous Reinforced Concrete Strip Footing

Footing Analysis

[In accordance with ACI318-19]
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	6.9			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	3.435	4	0.859	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, y-direction	kip_ft	0.6	11.8	0.052	Pass
Min.area of reinf, bot., y-direction	in 2	0.259	0.310		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	12.0		Pass

Strip footing details - considering a one meter strip

Length of footing;
Width of footing;
Footing area;
Depth of footing;
Depth of soil over footing;
Density of concrete;

Wall no. 1 details

Width of wall;
position in y-axis;

Soil Properties

Gross allowable bearing pressure; $\quad \mathrm{q}_{\text {allow_Gross }}=\mathbf{4} \mathrm{ksf}$;
Density of soil;
Angle of internal friction;
Design base friction angle;
Coefficient of base friction;
Self weight;
Soil weight;
$L_{x}=\mathbf{1 f t}$
$\mathrm{L}_{\mathrm{y}}=\mathbf{2} \mathrm{ft}$
$\mathrm{A}=\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}=\mathbf{2} \mathrm{ft}^{2}$
$\mathrm{h}=\mathbf{1 2}$ in
$\mathrm{h}_{\text {soil }}=\mathbf{3 . 5}$ in
$\gamma_{\text {conc }}=\mathbf{1 5 0 . 0} \mathbf{l b} / \mathrm{ft}^{3}$
$1_{\mathrm{y} 1}=\mathbf{1 2} \mathrm{in}$
$y_{1}=12$ in
$\gamma_{\text {soil }}=\mathbf{1 2 0 . 0} \mathbf{l b} / \mathrm{ft}^{3}$
$\phi_{\mathrm{b}}=\mathbf{3 0 . 0} \mathrm{deg}$
$\delta_{\mathrm{bb}}=\mathbf{3 0 . 0} \mathrm{deg}$
$\tan \left(\delta_{\mathrm{bb}}\right)=\mathbf{0 . 5 7 7}$
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=\mathbf{1 5 0} \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=\mathbf{3 5} \mathrm{psf}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{aligned} & \text { Date } \\ & 07 / 27 / 2022 \end{aligned}$

Wall no. 1 loads per linear foot

Dead load in z;
Live load in z;
Snow load in z;

Footing analysis for soil and stability

Load combinations per ASCE 7-10

1.0D (0.296)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.796)$
$1.0 \mathrm{D}+1.0 \mathrm{Lr}(0.296)$
$1.0 \mathrm{D}+1.0 \mathrm{~S}(0.546)$
$1.0 \mathrm{D}+1.0 \mathrm{R}(0.296)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}(0.671)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}(0.859)$
$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{R}(0.671)$
Combination 7 results: $1.0 \mathrm{D}+\mathbf{0 . 7 5 L}+\mathbf{0 . 7 5 S}$

Forces on footing per linear foot

Force in z-axis;
Moments on footing per linear foot
Moment in y-axis, about y is 0 ;

Uplift verification

Vertical force;

Stability against sliding
Resistance due to base friction;
$\mathrm{F}_{\text {RFriction }}=\max \left(\mathrm{F}_{\mathrm{dz}}, 0 \mathrm{kN}\right) \times \tan \left(\delta_{\mathrm{bb}}\right)=\mathbf{3 . 9 6 6} \mathrm{kips}$

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in y-axis;
$\mathrm{e}_{\mathrm{dy}}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0 . 0 0 0}$ in
Strip base pressures
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{y}} \times 1 \mathrm{ft}\right)=\mathbf{3 . 4 3 5} \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{y}} \times 1 \mathrm{ft}\right)=\mathbf{3 . 4 3 5} \mathrm{ksf}$
Minimum base pressure;
Maximum base pressure;
$\mathrm{q}_{\text {min }}=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=3.435 \mathrm{ksf}$
$\mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=3.435 \mathrm{ksf}$
Allowable bearing capacity

Allowable bearing capacity;
$\mathrm{q}_{\text {allow }}=\mathrm{q}_{\text {allow_Gross }}=\mathbf{4} \mathrm{ksf}$

$$
\mathrm{q}_{\max } / \mathrm{q}_{\text {allow }}=\mathbf{0 . 8 5 9}
$$

Engineers Design Grouplac.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section				Sheet no./rev.36	
	Calc. by AA	Date $07 / 20 / 2022$	Chk'd by MD	Date $07 / 27 / 2022$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

PASS - Allowable bearing capacity exceeds design base pressure

Footing Design

[In accordance with ACI318-19]

Material details

Compressive strength of concrete;
Yield strength of reinforcement;
Compression-controlled strain limit (21.2.2);
Cover to top of footing;
Cover to side of footing;
Cover to bottom of footing;
Concrete type;
Concrete modification factor;
Wall type;

Analysis and design of concrete footing

Load combinations per ASCE 7-10
1.4D (0.015)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}(0.047)$
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S}(0.052)$
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{R}(0.047)$
$1.2 \mathrm{D}+1.0 \mathrm{~L}+1.6 \mathrm{Lr}(0.034)$
$1.2 \mathrm{D}+1.0 \mathrm{~L}+1.6 \mathrm{~S}(0.051)$
$1.2 \mathrm{D}+1.0 \mathrm{~L}+1.6 \mathrm{R}(0.034)$
Combination 3 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+\mathbf{0 . 5 S}$

Forces on footing per linear foot

Ultimate force in z-axis;

Moments on footing per linear foot

Ultimate moment in y -axis, about y is 0 ;

Eccentricity of base reaction

Eccentricity of base reaction in y-axis;

Strip base pressures

Minimum ultimate base pressure;
Maximum ultimate base pressure;
$\mathrm{e}_{\mathrm{uy}}=\mathrm{M}_{\mathrm{uy}} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0 . 0 0 0}$ in
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{4 0 0 0} \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$
$\varepsilon_{\mathrm{ty}}=\mathbf{0 . 0 0 2 0 0}$

$\mathrm{c}_{\mathrm{nom} _\mathrm{s}}=\mathbf{3}$ in
$\mathrm{c}_{\text {nom_b }}=\mathbf{3}$ in
Normal weight
$\lambda=\mathbf{1 . 0 0}$
Concrete
$\mathrm{F}_{\mathrm{uz}}=\gamma_{\mathrm{D}} \times \mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right)+\square_{\mathrm{D}} \times \mathrm{F}_{\mathrm{Dz} 1}+\square_{\mathrm{L}} \times \mathrm{F}_{\mathrm{Lz} 1}+\square_{\mathrm{S}} \times \mathrm{F}_{\mathrm{Sz1}}=\mathbf{1 0 . 2}$
kips
$\mathrm{M}_{\mathrm{uy}}=\gamma_{\mathrm{D}} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right) \times \mathrm{L}_{\mathrm{y}} / 2\right)+\gamma_{\mathrm{D}} \times\left(\mathrm{F}_{\mathrm{Dz} 1} \times \mathrm{y}_{1}\right)+\gamma_{\mathrm{L}} \times\left(\mathrm{F}_{\mathrm{Lz} 1} \times \mathrm{y}_{1}\right)$ $+\gamma_{\mathrm{S}} \times\left(\mathrm{F}_{\mathrm{Sz} 1} \times \mathrm{y}_{1}\right)=\mathbf{1 0 . 2} \mathrm{kip} \mathrm{ft}$
$\mathrm{q}_{\mathrm{u} 1}=\mathrm{F}_{\mathrm{uz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{y}} \times 1 \mathrm{ft}\right)=\mathbf{5 . 1 2 2} \mathrm{ksf}$
$\mathrm{q}_{\mathrm{u} 2}=\mathrm{F}_{\mathrm{uz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{y}} \times 1 \mathrm{ft}\right)=\mathbf{5 . 1 2 2} \mathrm{ksf}$
$\mathrm{q}_{\mathrm{umin}}=\min \left(\mathrm{q}_{\mathrm{u} 1}, \mathrm{q}_{\mathrm{u} 2}\right)=\mathbf{5 . 1 2 2} \mathrm{ksf}$
$\mathrm{q}_{\mathrm{umax}}=\max \left(\mathrm{q}_{\mathrm{u} 1}, \mathrm{q}_{\mathrm{u} 2}\right)=\mathbf{5 . 1 2 2} \mathrm{ksf}$

Engineers Design Grouplic.	Project Northeast Metropolitan Regional Vocational High School				Job Ref.2019-091	
	Section MSBA Design Development Submission				Sheet no./rev.37	
	Calc. by AA	$\begin{aligned} & \text { Date } \\ & 07 / 20 / 2022 \end{aligned}$	Chk'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$	App'd by MD	$\begin{array}{\|l\|} \hline \text { Date } \\ 07 / 27 / 2022 \end{array}$

Moment design, y direction, positive moment
Ultimate bending moment;
$\mathrm{M}_{\text {u.y.max }}=\mathbf{0 . 6 1 2}$ kip_ft
Tension reinforcement provided;
Area of tension reinforcement provided;
Minimum area of reinforcement (7.6.1.1);
No. 5 bars at $12.0 \mathrm{in} \mathrm{c/c}$ bottom
$\mathrm{A}_{\text {sy.bot.prov }}=\mathbf{0 . 3 1} \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s} . \min }=0.0018 \times \mathrm{L}_{\mathrm{x}} \times \mathrm{h}=\mathbf{0 . 2 5 9} \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (7.7.2.3);
$\mathrm{s}_{\max }=\min (3 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement;
$\mathrm{d}=\mathrm{h}-\mathrm{c}_{\text {nom_b }}-\phi_{\text {y.bot }} / 2=\mathbf{8 . 6 8 8}$ in
$\mathrm{a}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} /\left(0.85 \times \mathrm{f}_{\mathrm{c}} \times \mathrm{L}_{\mathrm{x}}\right)=\mathbf{0 . 4 5 6}$ in
Depth of compression block;
Neutral axis factor;
$\beta_{1}=\mathbf{0 . 8 5}$
Depth to neutral axis;
$\mathrm{c}=\mathrm{a} / \beta_{1}=\mathbf{0 . 5 3 6}$ in
Strain in tensile reinforcement;
Minimum tensile strain(7.3.3.1);
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 4 5 5 9}$
$\varepsilon_{\min }=\varepsilon_{\mathrm{ty}}+0.003=\mathbf{0 . 0 0 5 0 0}$

Nominal moment capacity;
Flexural strength reduction factor;
Design moment capacity;

> PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=\mathbf{1 3 . 1 1 2}$ kip_ft
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=\mathbf{0 . 9 0 0}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=\mathbf{1 1 . 8 0 1}$ kip_ft
$\mathrm{M}_{\text {u. . } \text { max }} / \phi \mathrm{M}_{\mathrm{n}}=\mathbf{0 . 0 5 2}$
PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

One-way shear design does not apply. Shear failure plane fall outside extents of foundation.

