6A.3.1 - 07

GENERAL REQUIREMENTS
STRUCTURAL LOAD CALCULATIONS

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019-091		
	Section			Sheet no./rev.		
	M	SBA Design Dev	elopment Submis	sion		1
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Project Name:

Northeast Metropolitan Regional Vocational High School

MSBA Module 6 Requirements:

MSBA Design Development – Structural Loading Calculations

Prepared For: Drummey Rosane Anderson, Inc.

Prepared By: Alexander Auditore, B.S.E. – Engineers Design Group, Inc.

Checked By: Mehul Dhruv, P.E. – Engineers Design Group, Inc.

DDC	Project	st Metropolitan Re	cional Vocation	al Uigh Sahaal	Job Ref.)19-091
	Section	ist Wettopontan Re	gional vocation		Sheet no./rev.	
	beenon	MSBA Design De	velopment Subr	nission	Sheet no./rev.	2
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022
Table of Contents						
Project Synopsis						3
Design Codes						4
Geotechnical Recommendations f	or Foundation A	Analysis and Desi	ign			4
Project Materials and Strengths						4
Dead and Live Loading Criteria						5
Snow Loading Criteria						6
Wind Loading Criteria						7
Seismic Loading Calculations						16
Sample Gravity Analysis and Desi	ign Calculation	s				19

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section			Sheet no./rev.		
	M	SBA Design Dev	elopment Submis	sion		3
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Project Synopsis

The project is located in Wakefield, Massachusetts. The main building to be constructed consists of a four-story vocational high school near the existing Northeast Metropolitan Regional Vocational High School. The main building is comprised of four wings, named Areas A - D on the project documents. Areas A consists of the cafeteria/kitchen and acedemic rooms, Area B is the main acedemic wing, Area C holds the auditorium, and Area D the gymnasium. Additional buildings to be constructed consist of a two-story locker building, a single story concessions building, and a single story pre-engineered maintainance garage building.

The majority of the structure will be steel-framed, supported by reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. Each wing has a mezzanine level above the ground floor level that shall be constructed using precast concrete plank, supported by load-bearing concrete-masonry walls and reinforced concrete foundations. All suspsended floor systems above the mezzanine levels will be constructed as a light-weight concrete slab on steel deck, supported by structural steel beams and girders. The roof system in Areas A and B will consist of steel deck, supported by steel beams and girders; the main roof system in Areas C and D will consist of steel deck, supported by open-web steel joists.

The main structure's lateral force resisting system shall mainly consist of ordinary concentric steel braced frames, comprised of hollow-structural steel members. Reinforced concrete-masonry shear walls will be used throughout the building as well. The structure will have an expansion joint, separating Areas A and B from Areas C and D. The combined lateral force resisting system will be designed to resist the loads imparted on the structure from local wind and seismic forces per applicable design codes.

The two-story locker building structure will consist of structural steel beams, supported by load-bearing concrete-masonry walls and reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The second floor system will be constructed as a light-weight concrete slab on deck, supported by steel beams and girders. The roof system will consist of steel deck, supported by steel beams and girders.

The single-story concessions building will consist of pre-fabricated wood trusses, supported by load-bearing reinforced masonry walls and reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The roof system will consist of plywood sheathing, spanning over wood trusses and masonry walls on all sides.

The maintainance garage building will consist of a pre-engineered steel frame superstructure, supported on reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The roof system will consist of steel deck, supported by continuous steel 'Z'-shaped purlins, spanning between steel frames.

	Project .				Job Ref.	
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section			Sheet no./rev.		
E i D i G	M	SBA Design Dev	elopment Submis	sion		4
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Design Codes

- 1. Massachusetts State Building Code, 9th Edition
- 2. International Building Code, 2015 Edition
- 3. ASCE 7-10: Minimum Design Loads for Buildings and Other Structures
- 4. ACI 318-14: Building Code Requirements for Structural Concrete
- 5. ACI 530-13: Building Code Requirements for Masonry Structures
- 6. AISC 360-10: Specification for Structural Steel Buildings
- 7. Other codes as required by the design codes listed above

Geotechnical Recommendations for Foundation Analysis and Design

The foundation design for this project shall be done with the recommendations from the soils investigations performed by Lahlaf Geotechnical Consulting, Inc from June, 2021. Their report recommended a maximum net allowable bearing pressure of 4,000 pounds per square-foot to be used for the design of the structure's foundations.

Project Materials and Strengths

Concrete:

	 a. Foundations b. Slab-on-Grade c. Composite Slab-on-Steel Deck d. Exterior Concrete 	4500 psi 4000 psi 4000 psi 5000 psi
Reinforcing Steel:	ASTM A615, Grade 60 ASTM A185 for Welded Wire Reinforcing	
Structural Steel:	ASTM A992, Grade 50	
Steel Channels: Steel Plates, Bars, Angles, etc.:	ASTM A36 ASTM A36	
Hollow Structural Steel Sections:	ASTM A500, Grade B	
Structural Pipes:	ASTM A53, Grade B or ASTM A501	
High-Strength Bolts:	ASTM A325-N	
Steel Deck:	ASTM A653 (Galvanized Deck)	
Concrete-Masonry Units:	ASTM C90, Grade N, Type I, 2000 psi	
Grout:	ASTM C476, 2500 psi	
Mortar:	ASTM C270, Type S, 1800 psi	

	Project				Job Ref.	10.001	
		st Metropolitan Reg	ional Vocation	ai High School	2019-091		
	Section	MSBA Design Dev	valanma: + C1	ningian	Sheet no./rev.	5	
Engineers Design Group Inc.			5				
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	07/27/20	
Dead and Live Loading C	riteria						
Design Dead Loads:							
Typical Floor Loading on Compo	site Deck:					40	
5 ¼" Light-Weight Concrete 2" x 20-Gauge Composite Steel E	Deck					42 psf 3 psf	
Mechanical/ Electrical/ Plumbing						10 psf	
Miscellaneous						5 psf	
						∑60 psf	
Typical Roof Loading on Steel D	eck.						
3" x 20-Gauge Type NS or NSA						3 psf	
Roofing and Insulation						7 psf	
Mechanical/ Electrical/ Plumbing						10 psf	
Photovoltaic Panels						15 psf	
Miscellaneous						<u> </u>	
Roof Loading on Mechanical Roo	of Pads:					(- 0	
4 "Normal-Weight Concrete	N1-					67 psf	
3" x 20-Gauge Composite Steel E Mechanical/ Electrical/ Plumbing						3 psf <u>10 psf</u>	
Weenamean Electrical Tranionig						$\frac{10 \text{ psi}}{\sum 80 \text{ psf}}$	
Design Live Loads:							
Classrooms with Partitions				40	psf+15 psf (
Reading Rooms						Reducible)	
Corridors (First Floor)						Reducible)	
Corridors (Above First Floor) Lobbies				1	80 psf (1 00 psf (Non-1	Reducible)	
Assembly/Public Gathering Areas	5				00 psf (Non-1		
Stairs	-				00 psf (Non-1		
Storage (Light)				1	25 psf (Non-	Reducible)	
Storage (Mechanical Equipment)					50 psf (Non-1		
Roof (Live)					20 psf (Non-1	Reducible)	

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section			Sheet no./rev.		
F : D : C	MSBA Design Development Submission			6		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Snow Loading Criteria

	[In accordance with ASCE7-10]
Building details	
Roof type;	Flat
Width of roof;	b = 640.00 ft
Ground snow load	
Ground snow load;	$P_{g} = 50.00 \text{ lb/ft}^{2}$
Density of snow (Figure 7-1);	$\gamma = min(0.13 \times P_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 20.50 lb/ft^3$
Terrain typeSect. 26.7;	В
Exposure condition (Table 7-2);	Partially exposed
Exposure factor (Table 7-2);	$C_{e} = 1.00$
Thermal condition (Table 7-3);	All
Thermal factor (Table 7-3);	$C_{t} = 1.00$
Importance category (Table 1.5-1);	III
Importance factor (Table 1.5-2);	$I_s = 1.10$
Min snow load for low slope roofs (Sect 7.3.4);	$P_{f_{min}} = I_s \times 20 \ lb/ft^2 = 22.00 \ lb/ft^2$
Flat roof snow load (Sect 7.3);	$P_{\rm f} = 0.7 \times C_{\rm e} \times C_{\rm t} \times I_{\rm s} \times P_{\rm g} = \textbf{38.50} \ lb/ft^2$

	Project J			Job Ref.		
	Northeas	Northeast Metropolitan Regional Vocational High School			nool 2019-091	
	Section			Sheet no./rev.		
E i D i O	MSBA Design Development Submission			7		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Wind Loading Criteria

Areas A and B

[In accordance with ASCE7-10]

*Using the directional design method

Building data	
Type of roof;	Flat
Length of building;	$b = 470.00 \ ft$
Width of building;	d = 200.00 ft
Height to eaves;	H = 62.00 ft
Mean height;	h = 62.00 ft

General wind load requirements

Basic wind speed;	V = 137.0 mph
Risk category;	III
Velocity pressure exponent coef (Table 26.6-1);	$K_d = 0.85$
Exposure category (cl 26.7.3);	С
Enclosure classification (cl.26.10);	Enclosed buildings
Internal pressure coef +ve (Table 26.11-1);	$GC_{pi_p} = 0.18$
Internal pressure coef -ve (Table 26.11-1);	$GC_{pi_n} = -0.18$
Gust effect factor;	$G_{f} = 0.85$
Minimum design wind loading (cl.27.4.7);	$p_{min_r} = 8 \ lb/ft^2$

Topography

Topography factor not significant;	$K_{zt} = 1.0$
Velocity pressure equation;	$q = 0.00256 \times K_z \times K_{zt} \times K_d \times V^2 \times 1 psf/mph^2;$

Velocity pressures table

z (ft)	K _z (Table 27.3-1)	q _z (psf)
15.00	0.85	34.72
30.00	0.98	40.02
45.00	1.07	43.50
62.00	1.14	46.48

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.); $q_i = 46.48$ psf

Pressures and forces

Net pressure;

 $\mathbf{p} = \mathbf{q} \times \mathbf{G}_{\mathrm{f}} \times \mathbf{C}_{\mathrm{pe}} - \mathbf{q}_{\mathrm{i}} \times \mathbf{G}\mathbf{C}_{\mathrm{pi}};$

TIM	Project Northeast	Metropolitan Reg	ional Vocational I	High School	Job Ref. 2019-091	
LAJ	Section	1 0	elopment Submis		Sheet no./rev.	8
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Net force;

 $F_w = p \times A_{ref};$

Roof load case 1 - Wind 0, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (-ve)	62.00	-0.90	46.48	-43.92	14570.00	-639.93
B (-ve)	62.00	-0.90	46.48	-43.92	14570.00	-639.93
C (-ve)	62.00	-0.50	46.48	-28.12	29140.00	-819.38
D (-ve)	62.00	-0.30	46.48	-20.22	35720.00	-722.18
		•	E 2021 4			

Total vertical net force;

 $F_{w,v} = -2821.42 \text{ kips}$

Total horizontal net force;

$F_{w,h} = 0.00 \text{ kips}$

Walls load case 1 - Wind 0, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	15.24	7050.00	107.44
A ₂	30.00	0.80	40.02	18.85	7050.00	132.90
A ₃	45.00	0.80	43.50	21.21	7050.00	149.54
A ₄	62.00	0.80	46.48	23.24	7990.00	185.68
В	62.00	-0.50	46.48	-28.12	29140.00	-819.38
С	62.00	-0.70	46.48	-36.02	12400.00	-446.65
D	62.00	-0.70	46.48	-36.02	12400.00	-446.65

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 29140.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_{-0}} = 0.00 \text{ ft}^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{466.24 kips}$
Leeward net force;	$F_1 = F_{w,wB} = -819.4 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 575.6 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1394.9 \text{ kips}$

Roof load case 2 - Wind 0, GC_{pi} -0.18, -0c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (+ve)	62.00	-0.18	46.48	1.25	14570.00	18.28

	Project				Job Ref.		
	Northeast	Metropolitan Reg	2019-091				
	Section				Sheet no./rev.		
	M	SBA Design Dev	elopment Submis	sion		9	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022	

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	B (+ve)	62.00	-0.18	46.48	1.25	14570.00	18.28
	C (+ve)	62.00	-0.18	46.48	1.25	29140.00	36.57
	D (+ve)	62.00	-0.18	46.48	1.25	35720.00	44.82
То	Total vertical net force;			$F_{w,v} = 117.96$ l	kips		
То	Total horizontal net force;			$F_{w,h} = 0.00 \text{ kip}$	S		

Walls load case 2 - Wind 0, GC_{pi} -0.18, -0c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	31.97	7050.00	225.40
A ₂	30.00	0.80	40.02	35.58	7050.00	250.86
A ₃	45.00	0.80	43.50	37.94	7050.00	267.50
A4	62.00	0.80	46.48	39.97	7990.00	319.37
В	62.00	-0.50	46.48	-11.39	29140.00	-331.82
С	62.00	-0.70	46.48	-19.29	12400.00	-239.17
D	62.00	-0.70	46.48	-19.29	12400.00	-239.17

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 29140.00 \ ft^2$
Projected vertical area of roof;	$A_{vert_r_0} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{466.24 kips}$
Leeward net force;	$F_1 = F_{w,wB} = -331.8 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 1063.1 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1394.9 \text{ kips}$

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	A (-ve)	62.00	-0.90	46.48	-43.92	6200.00	-272.31
	B (-ve)	62.00	-0.90	46.48	-43.92	6200.00	-272.31
	C (-ve)	62.00	-0.50	46.48	-28.12	12400.00	-348.67
	D (-ve)	62.00	-0.30	46.48	-20.22	69200.00	-1399.06
Τc	Total vertical net force;			$F_{w,v} = -2292.3$	6 kips		•

Roof load case 3 - Wind 90, GC_{pi} 0.18, - c_{pe}

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section S			Sheet no./rev.		
E i D i O	M	SBA Design Dev	elopment Submis	sion		10
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Total horizontal net force;

 $F_{w,h} = 0.00 \text{ kips}$

Walls load case 3 - Wind 90, GC_{pi} 0.18, $-c_{pe}$

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	15.24	3000.00	45.72
A ₂	30.00	0.80	40.02	18.85	3000.00	56.55
A ₃	45.00	0.80	43.50	21.21	3000.00	63.63
A4	62.00	0.80	46.48	23.24	3400.00	79.01
В	62.00	-0.28	46.48	-19.53	12400.00	-242.13
С	62.00	-0.70	46.48	-36.02	29140.00	-1049.62
D	62.00	-0.70	46.48	-36.02	29140.00	-1049.62

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_{-}90} = d \times H = 12400.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_{-}90} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = 198.40 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -242.1 \text{ kips}$
Windward net force;	$F_{w} = F_{w,wA_{-}1} + F_{w,wA_{-}2} + F_{w,wA_{-}3} + F_{w,wA_{-}4} = 244.9 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 487.0 \text{ kips}$

Roof load case 4 - Wind 90, GC_{pi} -0.18, +c_{pe}

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)	
	A (+ve)	62.00	-0.18	46.48	1.25	6200.00	7.78	
	B (+ve)	62.00	-0.18	46.48	1.25	6200.00	7.78	
	C (+ve)	62.00	-0.18	46.48	1.25	12400.00	15.56	
	D (+ve)	62.00	-0.18	46.48	1.25	69200.00	86.84	
Tot	Total vertical net force;			$F_{w,v} = 117.96 \text{ kips}$				
Tot	Total horizontal net force;			$F_{w,h} = 0.00 \text{ kips}$				

Walls load case 4 - Wind 90, GC_{pi} -0.18, $+c_{pe}$

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	31.97	3000.00	95.92

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section			Sheet no./rev.		
	MSBA Design Development Submission			11		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₂	30.00	0.80	40.02	35.58	3000.00	106.75
A ₃	45.00	0.80	43.50	37.94	3000.00	113.83
A_4	62.00	0.80	46.48	39.97	3400.00	135.90
В	62.00	-0.28	46.48	-2.79	12400.00	-34.65
С	62.00	-0.70	46.48	-19.29	29140.00	-562.06
D	62.00	-0.70	46.48	-19.29	29140.00	-562.06

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_{90}} = d \times H = 12400.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_r_90} = 0.00 \text{ ft}^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = 198.40 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -34.7 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 452.4 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_{w} - F_{l} + F_{w,h}, F_{w,total_min}) = 487.0 \text{ kips}$

Areas C and D

[In accordance with ASCE 7-10]

*Using the directional design method

Building data

Type of roof;	Flat
Length of building;	b = 285.00 ft
Width of building;	d = 200.00 ft
Height to eaves;	H = 82.00 ft
Mean height;	h = 82.00 ft

General wind load requirements

Basic wind speed;	V = 137.0 mph
Risk category;	III
Velocity pressure exponent coef (Table 26.6-1);	$K_d = 0.85$
Exposure category (cl 26.7.3);	С
Enclosure classification (cl.26.10);	Enclosed buildings
Internal pressure coef +ve (Table 26.11-1);	$GC_{pi_p} = 0.18$
Internal pressure coef -ve (Table 26.11-1);	$GC_{pi_n} = -0.18$
Gust effect factor;	$G_{f} = 0.85$

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section			Sheet no./rev.		
]	MSBA Design Dev	velopment Submis	ssion		12
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Minimum design wind loading (cl.27.4.7); $p_{min r}$

 $p_{min_r} = \mathbf{8} lb/ft^2$

Topography

Topography factor not significant;

Velocity pressure equation;

$$\begin{split} K_{zt} &= 1.0 \\ q &= 0.00256 \times K_z \times K_{zt} \times K_d \times V^2 \times 1 \text{psf/mph}^2; \end{split}$$

Velocity pressures table

z (ft)	K _z (Table 27.3-1)	q _z (psf)
15.00	0.85	34.72
40.00	1.04	42.47
60.00	1.13	46.15
82.00	1.22	49.66

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.); $q_i = 49.66 \text{ psf}$

Pressures and forces

Net pressure;

Net force;

$$\begin{split} p &= q \times G_{f} \times C_{pe} \text{ - } q_{i} \times GC_{pi}\text{;} \\ F_{w} &= p \times A_{ref}\text{;} \end{split}$$

Roof load case 1 - Wind 0, GC_{pi} 0.18, - c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (-ve)	82.00	-0.90	49.66	-46.93	11685.00	-548.40
B (-ve)	82.00	-0.90	49.66	-46.93	11685.00	-548.40
C (-ve)	82.00	-0.50	49.66	-30.05	23370.00	-702.18
D (-ve)	82.00	-0.30	49.66	-21.60	10260.00	-221.65
Total vertical net	t force;	•	$F_{w,v} = -2020.6$	2 kips	-	·

Total vertical net force; Total horizontal net force;

 $F_{w,h} = 0.00 \text{ kips}$

Walls load case 1 - Wind 0, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	14.67	4275.00	62.70
A ₂	40.00	0.80	42.47	19.94	7125.00	142.10
A ₃	60.00	0.80	46.15	22.44	5700.00	127.93
A ₄	82.00	0.80	49.66	24.83	6270.00	155.69
В	82.00	-0.50	49.66	-30.05	23370.00	-702.18

	Project				Job Ref.	
	Northeast I	Metropolitan Reg	2019	9-091		
	Section	Sheet no./rev.				
	M	SBA Design Dev	elopment Submis	sion		13
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
С	82.00	-0.70	49.66	-38.49	16400.00	-631.22
D	82.00	-0.70	49.66	-38.49	16400.00	-631.22

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 23370.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_{r_0}} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = 373.92 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -702.2 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 488.4 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1190.6 \text{ kips}$

Roof load case 2 - Wind 0, GC_{pi} -0.18, -0 c_{pe}

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	A (+ve)	82.00	-0.18	49.66	1.34	11685.00	15.67
	B (+ve)	82.00	-0.18	49.66	1.34	11685.00	15.67
	C (+ve)	82.00	-0.18	49.66	1.34	23370.00	31.34
	D (+ve)	82.00	-0.18	49.66	1.34	10260.00	13.76
Τc	Total vertical net force;			F _{w,v} = 76.43 ki	ps		

Total horizontal net force;

 $F_{w,h} = 0.00 \text{ kips}$

Walls load case 2 - Wind 0, GC_{pi} -0.18, -0 c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	32.55	4275.00	139.13
A ₂	40.00	0.80	42.47	37.82	7125.00	269.48
A ₃	60.00	0.80	46.15	40.32	5700.00	229.83
A ₄	82.00	0.80	49.66	42.71	6270.00	267.79
В	82.00	-0.50	49.66	-12.17	23370.00	-284.35
С	82.00	-0.70	49.66	-20.61	16400.00	-338.01
D	82.00	-0.70	49.66	-20.61	16400.00	-338.01

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section	Sheet no./rev.				
	M	SBA Design Dev	elopment Submis	sion		14
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 23370.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_r_0} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = 373.92 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -284.4 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 906.2 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1190.6 \text{ kips}$

Roof load case 3 - Wind 90, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (-ve)	82.00	-0.90	49.66	-46.93	8200.00	-384.84
B (-ve)	82.00	-0.90	49.66	-46.93	8200.00	-384.84
C (-ve)	82.00	-0.50	49.66	-30.05	16400.00	-492.76
D (-ve)	82.00	-0.30	49.66	-21.60	24200.00	-522.80

Total vertical net force;

Total horizontal net force;

 $F_{w,v} = -1785.24 \text{ kips}$ $F_{w,h} = 0.00 \text{ kips}$

Walls load case 3 - Wind 90, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	14.67	3000.00	44.00
A ₂	40.00	0.80	42.47	19.94	5000.00	99.72
A ₃	60.00	0.80	46.15	22.44	4000.00	89.77
A ₄	82.00	0.80	49.66	24.83	4400.00	109.26
В	82.00	-0.41	49.66	-26.46	16400.00	-433.91
С	82.00	-0.70	49.66	-38.49	23370.00	-899.49
D	82.00	-0.70	49.66	-38.49	23370.00	-899.49

Overall loading

Projected vertical plan area of wall; Projected vertical area of roof; Minimum overall horizontal loading; Leeward net force;
$$\begin{split} A_{vert_w_90} &= d \times H = \textbf{16400.00} \ ft^2 \\ A_{vert_r_90} &= \textbf{0.00} \ ft^2 \\ F_{w,total_min} &= p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{262.40} \ kips \\ F_1 &= F_{w,wB} = \textbf{-433.9} \ kips \end{split}$$

	Project				Job Ref.	
	Northeast	2019-091				
	Section	Sheet no./rev.				
	Ν	ISBA Design Dev	velopment Submis	sion		15
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Windward net force;	$F_{w} = F_{w,wA_{-}1} + F_{w,wA_{-}2} + F_{w,wA_{-}3} + F_{w,wA_{-}4} = 342.8 \text{ kips}$
Overall horizontal loading:	$F_{w \text{ total}} = \max(F_{w} - F_{l} + F_{w \text{ h}}, F_{w \text{ total min}}) = 776.7 \text{ kips}$

Roof load case 4 - Wind 90, GC_{pi} -0.18, +c_{pe}

Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
82.00	-0.18	49.66	1.34	8200.00	11.00
82.00	-0.18	49.66	1.34	8200.00	11.00
82.00	-0.18	49.66	1.34	16400.00	21.99
82.00	-0.18	49.66	1.34	24200.00	32.45
	height (ft) 82.00 82.00 82.00	height (ft) coefficient c _{pe} 82.00 -0.18 82.00 -0.18 82.00 -0.18	height (ft) coefficient c _{pe} (psf) pressure q _p (psf) 82.00 -0.18 49.66 82.00 -0.18 49.66 82.00 -0.18 49.66	height (ft) coefficient c _{pe} pressure q _p (psf) p (psf) 82.00 -0.18 49.66 1.34 82.00 -0.18 49.66 1.34 82.00 -0.18 49.66 1.34 82.00 -0.18 49.66 1.34	height (ft) coefficient c _{pe} pressure q _p (psf) p (psf) A _{ref} (ft ²) 82.00 -0.18 49.66 1.34 8200.00 82.00 -0.18 49.66 1.34 8200.00 82.00 -0.18 49.66 1.34 8200.00 82.00 -0.18 49.66 1.34 16400.00

Total vertical net force;

Total horizontal net force;

```
F_{w,v} = 76.43 kips
```

```
F_{w,h} = 0.00 \text{ kips}
```

Walls load case 4 - Wind 90, GC_{pi} -0.18, $+c_{pe}$

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	32.55	3000.00	97.64
A ₂	40.00	0.80	42.47	37.82	5000.00	189.11
A ₃	60.00	0.80	46.15	40.32	4000.00	161.29
A ₄	82.00	0.80	49.66	42.71	4400.00	187.93
В	82.00	-0.41	49.66	-8.58	16400.00	-140.70
С	82.00	-0.70	49.66	-20.61	23370.00	-481.66
D	82.00	-0.70	49.66	-20.61	23370.00	-481.66

Overall loading

Projected vertical plan area of wall; Projected vertical area of roof; Minimum overall horizontal loading; Leeward net force; Windward net force; Overall horizontal loading;
$$\begin{split} A_{vert_w_90} &= d \times H = \textbf{16400.00} \ \text{ft}^2 \\ A_{vert_r_90} &= \textbf{0.00} \ \text{ft}^2 \\ F_{w,total_min} &= p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{262.40} \ \text{kips} \\ F_1 &= F_{w,wB} = \textbf{-140.7} \ \text{kips} \\ F_w &= F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = \textbf{636.0} \ \text{kips} \\ F_{w,total} &= max(F_w - F_1 + F_{w,h}, F_{w,total_min}) = \textbf{776.7} \ \text{kips} \end{split}$$

LIN	Project Northea	st Metropolitan Reg	gional Vocation	al High School	Job Ref.	019-091
	Section		-	-	Sheet no./rev.	
		MSBA Design De	velopment Subi	mission		16
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2
Seismic Loading Calculation	ons					
Areas A and B						
				[In ac	cordance wi	th ASCE 7
Site parameters						
Site class;		D				
Mapped acceleration parameters (S	Section 11.4.1)					
at short period;		$S_{S} = 0.25$				
at 1 sec period;		$S_1 = 0.08$				
Site coefficientat short period (Tab	ole 11.4-1);	$F_a = 1.600$				
at 1 sec period (Table 11.4-2);		$F_v = 2.400$				
Spectral response acceleration p	arameters					
at short period (Eq. 11.4-1);		$\mathbf{S}_{\mathrm{MS}} = \mathbf{F}_{\mathrm{a}} \times \mathbf{S}_{\mathrm{S}}$	= 0.400			
at 1 sec period (Eq. 11.4-2);		$\mathbf{S}_{\mathrm{M1}} = \mathbf{F}_{\mathrm{v}} \times \mathbf{S}_{\mathrm{1}} =$	= 0.192			
Design spectral acceleration para	ameters (Sect					
at short period (Eq. 11.4-3);		$S_{DS} = 2 / 3 \times S_{DS}$				
at 1 sec period (Eq. 11.4-4);		$S_{D1} = 2 / 3 \times S$	$M_{\rm M1} = 0.128$			
Seismic design category						
Risk category (Table 1.5-1);		III				
Seismic design category based on	short period re	sponse acceleration	on (Table 11.6	-1)		
		В				
Seismic design category based on	1 sec period re	sponse acceleration	on (Table 11.6	5-2)		
		В				
Seismic design category;		В				
Approximate fundamental perio	d					
Height above base to highest level	of building;	$h_n = 62 ft$				
From Table 12.8-2:						
Structure type;		All other syste	ems			
Building period parameter C _t ;		$C_t = 0.02$				
Building period parameter x;		x = 0.75				
Approximate fundamental period (Eg 12.8-7).	$T_a = C_t \times (h_n)^x$	\times 1 sec / (1 ft)	[≤] = 0.442 sec		
Building fundamental period (Sect		$T_a = C_t + (n_n)$ $T = T_a = 0.442$				
Long-period transition period;	12.0.2),	$T_{L} = 12 \text{ sec}$				
Seismic response coefficient						
Seismic force-resisting system (Ta	ble 12.2-1);	B_BUILDING	G_FRAME_SY	YSTEMS		
		3. Ordinary ste	eel concentrica	ally braced frames		

FIN	Project Northea	st Metropolitan Re	gional Vocation	al High School	Job Ref.)19-091
	Section	Sheet no./rev.				
F : D : C	MSBA Design Development Submission			nission		17
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/20
Response modification factor (Tab	le 12.2-1);	R = 3.25				
Seismic importance factor (Table 1	.5-2);	$I_e = 1.250$				
Seismic response coefficient (Sect	12.8.1.1)					
Calculated (Eq 12.8-2);		$C_{s_{calc}} = S_{DS} / c_{s_{calc}}$	$(R / I_e) = 0.102$	26		
Maximum (Eq 12.8-3);		$C_{s_max} = S_{D1} / C_{s_max}$	$((T / 1 \text{ sec}) \times ($	$R / I_e)) = 0.1114$		
Minimum (Eq 12.8-5);		$C_{s \min} = \max(0)$	$0.044 \times S_{DS} \times 1$	(e, 0.01) = 0.0147		
Seismic response coefficient;		$C_s = 0.1026$				
Seismic base shear (Sect 12.8.1)						
Effective seismic weight of the stru	icture;	W = 19660.0	kips			
Seismic response coefficient;		$C_s = 0.1026$				
Seismic base shear (Eq 12.8-1);		$V = C_s \times W =$	2016.4 kips			
Among Cound D						
Areas C and D				[In ac	cordance wi	th ASCE 7.
Site parameters				ſ		
Site class;		D				
Mapped acceleration parameters (S	Section 11.4.1)					
at short period;		$S_{S} = 0.25$				
at 1 sec period;		$S_1 = 0.08$				
Site coefficientat short period (Tab	le 11.4-1);	$F_a = 1.600$				
at 1 sec period (Table 11.4-2);		$F_v = 2.400$				
Spectral response acceleration pa	arameters					
at short period (Eq. 11.4-1);		$S_{MS} = F_a \times S_S$	= 0.400			
at 1 sec period (Eq. 11.4-2);		$S_{M1} = F_v \times S_1$	= 0.192			
Design spectral acceleration para	ameters (Sect	,				
at short period (Eq. 11.4-3);		$S_{DS} = 2/3 \times 3$				
at 1 sec period (Eq. 11.4-4);		$S_{D1} = 2 / 3 \times S$	$b_{M1} = 0.128$			
Seismic design category						
Risk category (Table 1.5-1);		III				
Seismic design category based on	short period res	-	on (Table 11.6	-1)		
Seismic design category based on	l sec period res	B sponse acceleration	on (Table 11.6	-2)		
•	-	В				
Seismic design category;		В				
Approximate fundamental perio	d					
Height above base to highest level	C1 '1 1'	$h_n = 82 ft$				

	Project	-t Matura 1itas D	Job Ref.					
		st Metropolitan Reg	gional vocation	al High School	2019-091			
	Section	MSDA Dasian Da	valanna ant Subn	nizzion	Sheet no./rev.	18		
Engineers Design Group Inc.	Calc. by	MSBA Design Dev Date	Chk'd by	Date	Angldhy	Date		
Engineers besign broop	AA	07/20/2022	MD	07/27/2022	App'd by MD	07/27/202		
From Table 12.8-2:								
Structure type;		All other syste	ms					
Building period parameter C _t ;		$C_t = 0.02$						
Building period parameter x;		x = 0.75						
Approximate fundamental period	(Eq 12.8-7);	$T_a = C_t \times (h_n)^x$	×□ 1sec / (1f	t) ^x = 0.545 sec				
Building fundamental period (Sect 12.8.2);		$T = T_a = 0.545 \text{ sec}$						
Long-period transition period;		$T_L = 12 \text{ sec}$						
Seismic response coefficient								
Seismic force-resisting system (T	able 12.2-1);	B_BUILDING_FRAME_SYSTEMS						
		3. Ordinary ste	el concentrica	ally braced frames				
Response modification factor (Ta	ble 12.2-1);	R = 3.25						
Seismic importance factor (Table	1.5-2);	$I_e = 1.250$						
Seismic response coefficient (Sec	t 12.8.1.1)							
Calculated (Eq 12.8-2);		$C_{s_{calc}} = S_{DS} / ($	$R / I_e) = 0.102$	26				
Maximum (Eq 12.8-3);		$C_{s_{max}} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.0903$						
Minimum (Eq 12.8-5);		$C_{s \min} = \max(0.044 \times S_{DS} \times I_{e}, 0.01) = 0.0147$						
Seismic response coefficient;		$C_s = 0.0903$						
Seismic base shear (Sect 12.8.1)								
Effective seismic weight of the str	ructure;	W = 9390.0 ki	ps					
Seismic response coefficient;		$C_{s} = 0.0903$						

Seismic base shear (Eq 12.8-1);

 $V = C_s \times W =$ **848.2** kips

	Project				Job Ref.	
	Northeast	Metropolitan Reg	2019-091			
	Section				Sheet no./rev.	
E i D i C	MSBA Design Development Submission				19	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022
				•	•	

Sample Gravity Analysis and Design Calculations

1. Sample Steel Roof Beam

[In accordance with AISC360-16 using the LRFD method]

Support conditions		
Support A	Vertically restrained	
	Rotationally free	
Support B	Vertically restrained	
	Rotationally free	
Applied loading		
Beam loads	Dead self weight of beam $\times 1$	
	Dead full UDL 0.35 kips/ft	
	Snow full UDL 0.4 kips/ft	
	Roof Live full UDL 0.2 kips/ft	
Load combinations		
Load combination 1 - Full	Support A	$Dead \times 1.20$
		Live \times 1.60
		Snow \times 1.60
		Roof Live × 1.60
		Dead \times 1.20
		Live \times 1.60
		Snow \times 1.60
		Roof Live × 1.60
	Support B	Dead \times 1.20
		Live \times 1.60
		Snow \times 1.60
		Roof Live × 1.60
Analysis results		
Maximum moment;	M _{max} = 234.3 kips_ft;	$M_{min} = 0$ kips_ft
Maximum shear;	$V_{max} = 26$ kips;	$V_{min} = -26 \text{ kips}$
Deflection;	$\delta_{\max} = 1$ in;	$\delta_{\min} = 0 \text{ in}$
Maximum reaction at support A;	$R_{A_{max}} = 26$ kips;	$R_{A_{min}} = 26 \text{ kips}$
Unfactored dead load reaction at support A;	$R_{A_Dead} = 7.3$ kips	
Unfactored snow load reaction at support A;	$R_{A_Snow} = 7.2$ kips	
Unfactored roof live load reaction at support A;	$R_{A_Roof Live} = 3.6$ kips	
Maximum reaction at support B;	$R_{B_{max}} = 26$ kips;	$R_{B_{min}} = 26 \text{ kips}$
Unfactored dead load reaction at support B;	$R_{B_{Dead}} = 7.3 \text{ kips}$	
Unfactored snow load reaction at support B;	$R_{B_{snow}} = 7.2 \text{ kips}$	

	-	Project Northeast Metropolitan Regional Vocational High School				
	Section		Sheet no./rev.			
Engineers Design Group Inc.		MSBA Design De				20
cultures pesitin oronhine	Calc. by	Date	Chk'd by	Date	App'd by	Date 07/27/2
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2
Unfactored roof live load reaction	at support B;	$R_{B_{Roof Live}} = 3$.6 kips			
Section details						
Section type;		W 24x55 (AIS	SC 15th Edn (v15.0))		
ASTM steel designation;		A992				
Steel yield stress;		$F_y = 50 \text{ ksi}$				
Steel tensile stress;		$F_u = 65 \text{ ksi}$				
Modulus of elasticity;		E = 29000 ksi				
Resistance factors						
Resistance factor for tensile yield	ing	$\phi_{ty}=\boldsymbol{0.90}$				
Resistance factor for tensile ruptu	re	$\phi_{\rm tr} = 0.75$				
Resistance factor for compression	L	$\phi_{\rm c}=0.90$				
Resistance factor for flexure		$\phi_b = \boldsymbol{0.90}$				
Lateral bracing						
		Span 1 has con	ntinuous lateral	l bracing		
Classification of sections for loc	al buckling - S	Section B4.1				
Classification of flanges in flexu	re - Table B4.	1b (case 10)				
Width to thickness ratio;		$\mathbf{b}_{\mathrm{f}} / (2 \times \mathbf{t}_{\mathrm{f}}) = 6$.94			
Limiting ratio for compact section	ı;	$\lambda_{pff}\!=\!0.38\times $	$[E / F_y] = 9.15$			
Limiting ratio for non-compact se	ction;	$\lambda_{\rm rff} = 1.0 imes \sqrt{[H]}$	$E / F_y] = 24.08;$	Compact		
Classification of web in flexure	- Table B4.1b	(case 15)				
Width to thickness ratio;		$(d - 2 \times k) / t_w$	= 54.63			
Limiting ratio for compact section	ı;	$\lambda_{pwf} = 3.76 \times \gamma$	$[E / F_y] = 90.4$	55		
Limiting ratio for non-compact se	ction;	$\lambda_{\rm rwf} = 5.70 \times \gamma$	$[E / F_y] = 137$.27; Compact		
				S	ection is con	pact in flex
Design of members for shear - C	Chapter G					
Required shear strength		$V_r = max(abs($	V _{max}), abs(V _{min}	(n)) = 26.031 kips		
Web area		$A_w = d \times t_w = d$	9.322 in ²			
Web plate buckling coefficient		$k_v = 5.34$				
Web shear coefficient - eq G2-3		$C_{v1} = 1$				
Nominal shear strength - eq G6-1		$V_n = 0.6 \times F_y$	$\times A_{w} \times C_{v1} = 2$	79.660 kips		
Resistance factor for shear		$\phi_{\rm v}=0.90$				
Resistance factor for shear		$V_c = \phi_v \times V_n =$	= 251.694 kips			
Design shear strength						
		PA	SS - Design sh	near strength exce	eds required	shear strei
	n the major ax		SS - Design sh	near strength exce	eds required	shear strei

	Project				Job Ref.	
	Northeast 1	Metropolitan Reg	2019-091			
	Section				Sheet no./rev.	
F i D i C	MSBA Design Development Submission				21	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022
			-			

Yielding - Section F2.1	
Nominal flexural strength for yielding - eq F2-1;	$M_{nyld} = M_p = F_y \times Z_x = 558.333 \text{ kips_ft}$
Nominal flexural strength;	$M_n = M_{nyld} = 558.333 \text{ kips_ft}$
Design flexural strength;	$M_c = \phi_b \times M_n = 502.500 \text{ kips_ft}$
	PASS - Design flexural strength exceeds required flexural strength

Design of members for vertical deflection

Consider deflection due to dead, live, snow and roof live loads

Limiting deflection;	$\delta_{\text{lim}} = \min(1.5 \text{ in}, L_{s1} / 360) = 1.2 \text{ in}$
Maximum deflection span 1;	$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.97$ in
	PASS - Maximum deflection does not exceed deflection limit

2. Sample Composite Steel Floor Beam

[In accordance with AISC 360-16 using the load and resistance factor design method]

Design summary

Overall design status;	Pass
Overall design utilisation;	0.847

Description	Unit	Provided	Required	Utilization	Result
Moment, constr	(kip_ft)	502.5	157.8	0.314	PASS
Shear, constr	(kips)	251.69	17.53	0.070	PASS
Moment, comp	(kip_ft)	786.81	387.17	0.492	PASS
Shear, comp	(kips)	251.69	43.02	0.171	PASS
Deflection, constr	(in)	1.5	0.72	0.479	PASS
Deflection, comp	(in)	1.5	1.27	0.847	PASS

Basic dimensions

Beam span;	L = 36.000 ft
Beam spacing on one side;	b ₁ = 10.000 ft
Beam spacing on other side;	b ₂ = 10.000 ft
Deck orientation;	Deck ribs perpendicular to beam
Profiles are assumed to meet all dimensional criter	ia in AISC 360-16
Overall depth of slab;	t = 5.250 in
Height of ribs;	$h_r = 2.000$ in
Centers of ribs;	$rib_{ccs} = 12.000$ in
Average width of rib;	$w_r = 7.000$ in

FNC		Metropolitan Reg	gional Vocation	al High School)19-091
	Section	/ISBA Design De	velopment Subn	nission	Sheet no./rev.	22
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022
Material properties						
Concrete						
Specified compressive strength of c	oncrete;	f' _c = 4.00 ksi				
Wet density of concrete;		$w_{cw} = 125 \text{ lb/f}$				
Dry density of concrete;		$w_{cd} = 115 \text{ lb/ft}$				
Modulus of elasticity of concrete; Steel		$E_{c} = w_{cd}^{1.5} \times $	(f' _c × 1 ksi) /(1	$(1 \text{ lb/ft}^3)^{1.5} = 2466 \text{ ls}^3$	csi	
Specified minimum yield stress of s	steel;	$F_y = 50 \text{ ksi}$				
Modulus of elasticity of steel;		E _s = 29000 ks	i			
Loading – secondary beam						
Weight of slab construction stage;		$w_{slab_constr} = [t - $	$-h_r \times (1 - w_r / $	rib_{ccs}] × $w_{cw} = 4$	6.007 psf	
Weight of slab composite stage;		$w_{slab_comp} = [t - $	$-h_r \times (1 - w_r /)$	rib_{ccs}] × w_{cd} = 42	2.326 psf	
Weight of steel deck;		$w_{deck} = 3.000$	osf			
Additional dead load;		$w_{d_{add}} = 0.000$	psf			
Weight of steel beam;		$w_{beam_s} = 55.00$	00 lb/ft			
Weight of construction live load;		$w_{constr} = 20.00$	0 psf			
Superimposed dead load;		$W_{serv} = 15.000$	psf			
Weight of wall parallel to span;		$W_{w_par} = 0.000$	lb/ft			
Weight of wall perpendicular to spa	ın;	$W_{w_perp} = 0.000$) lb/ft ;assume	d to be at mid-spar	n.	
Floor live load;		$w_{imp} = 100.000$) psf			
Lightweight partition load;		$w_{part} = 0.000 p$	sf			
Total construction stage dead load;		$w_{constr_D} = [(w_s)$	$_{lab_constr} + w_{deck} +$	$-w_{d_add}) \times ((b_1+b_2)/2)$	$(2)] + w_{\text{beam}_s} =$	545.069 lb/ft
Total construction stage live load;		$\mathbf{W}_{constr_L} = \mathbf{W}_{con}$	$_{\rm str} \times (b_1 + b_2) /$	2 = 200.000 lb/ft		
Total composite stage dead load(ex lb/ft	cluding walls);	$W_{comp_D} = [(W_s)$	lab_comp+Wdeck+	$w_{d_{add}} + w_{serv}) \times (b_1 + b_2)$	b ₂)/2]+w _{beam} _	_s = 658.264
Total composite stage live load;		$w_{comp_L} = (w_{im})$	$(b_1 + w_{part}) \times (b_1)$	$(+ b_2)/2 = 1000.00$	0 lb/ft;	
Design forces – secondary beam						
Max ultimate moment at construction	on stage;	$M_{constr_u} = (1.2)$	$2 \times w_{constr_D} + 2$	$1.6 \times w_{constr_L}) \times L$	$2^{2}/8 = 157.80$	1 kips_ft
Max ultimate shear at construction	stage;	$V_{constr_u} = (1.2)$	$x \times w_{constr_D} + 1$	$.6 \times w_{constr_L}$) × L	/ 2 = 17.534	kips
Maximum ultimate moment at com	posite stage;					
$M_{comp_u} = (1.2 \times w_{comp_D} + 1.6 \times w_c)$		$1.2 \times W_{w_par} \times 1$	$L^{2}/8 + 1.2 \times w$	$w_{perp} \times (b_1 + b_2)/2$	× L/4= 387.1	66 kips_ft
Maximum ultimate shear at compos		1.0				0.1.*
$V_{comp_u} = (1.2 \times w_{comp_D} + 1.6 \times w_{comp_u})$ Point of max. B.M. from nearest sup		$1.2 \times w_{w_par} \times I$ $L_{BM_near} = L/2$		$w_{perp} \times (b_1 + b_2)/2$	× 1/2= 43.01	9 kips
Steel section check						
Trial steel section;		W24X55				
Plastic modulus of steel section;		$Z_x = 134.00$ in	3			
Elastic modulus of steel section;		$S_x = 114.00$ in	3			
Width to thickness ratio;		$\lambda_{\rm f} = b_{\rm f} / (2 \times t)$	_f) = 6.941			

	Project Northeas	st Metropolitan Re	gional Vocation	al High School	Job Ref.)19-091
	Section		-	~	Sheet no./rev.	
		MSBA Design De	velopment Subr	nission	23	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/20
Limiting width to thickness ratio (compact);	$\lambda_{\rm pf} = 0.38 \times \sqrt{6}$	$E_{\rm S} / F_{\rm y}) = 9.15$	52		
Limiting width to thickness ratio (noncompact);	$\lambda_{\rm rf} = \sqrt{(E_{\rm S} / F_{\rm y})}$	= 24.083			
					Fla	nge is comp
Depth to thickness ratio (h/t _w);		$\lambda_{\rm w}=\textbf{54.600}$				
Limiting depth to thickness ratio (compact);	$\lambda_{pw} = 3.76 \times \sqrt{6}$	$(E_s / F_y) = 90.5$	553		
Limiting depth to thickness ratio (noncompact);	$\lambda_{\rm rw} = 5.70 \times \sqrt{100}$	$E_{\rm S} / F_{\rm y}) = 137.2$	274		
					J	Web is comp
Strength check at construction s	tage for flexur	e				
Check for flexure						
Plastic moment for steel section;		$M_p = F_y \times Z_x =$	558.333 kip_	ft		
Resistance factor for flexure;		$\phi_b = 0.90$				
Design flexural strength of steel s	ection alone;	$M_{constr_n} = \phi_b \times$	$M_p = 502.500$) kip_ft		
Required flexural strength;		$M_{constr_u} = 157$.801 kip_ft			
			PASS	- Beam bending a	t constructio	n stage load
Strength check at construction s	tage for shear					
Web area;	8	$A_w = d \times t_w = d$	9.322 in ²			
Web plate buckling coefficient;		$k_v = 5.34$				
Depth to thickness ratio (h/t _w);		$\lambda_{\rm w} = 54.600$				
Web shear coefficient;		$C_{v1} = 1.00$				
Resistant factor for shear;		$\phi_{\rm v}=0.9$				
Design shear strength;		$V_{constr_n} = \phi_v \times$	$(0.6 \times F_y \times A)$	$_{\rm w} \times {\rm C_{v1}} = 251.694$	kips	
Required shear strength;		$V_{constr_u} = 17.5$	34 kips			
			PAS	SS - Beam shear a	t constructio	n stage load
Design of steel anchors						
Note - for non-uniform stud layou	ts a higher conc	entration of stud	s should be loo	cated towards the	ends of the be	am
Effective slab width of composite	section;	b = min(L/8, b	$(L/2) + \min(L/2)$	$(b_2/2) = 108.000$	in	
Effective area of concrete flange;		$A_c = b \times (t - h)$	$_{\rm r}) = 351.00 \ {\rm in}^2$	2		
Diameter of stud anchor;		dia = 0.750 in				
Length of stud anchor after weld;		$H_{s} = 3.50$ in				
Specified tensile strength of stud a	inchor;	$F_u = 65 \text{ ksi}$				
Cross section area of one stud and	hor;	$A_{sa} = \pi \times dia^2$	$/4 = 0.442 \text{ in}^2$			
Maximum diameter permitted;		$dia_{max} = 2.5 \times$	$t_{\rm f}$ = 1.263 in			
				ISS - Diameter of	stud anchor	provided is
Point of max. B.M. from nearest s		$L_{BM_near} = 18.0$				
No. of ribs from points of zero to	max moment;	$rib_{numbers} = int($	L_{BM_near} / rib_{ccs}	-1) = 17		
No. of ribs with 1 stud per rib;		$N_{r1} = 17$				
No. of ribs with 2 studs per rib;		$N_{r2} = 0$				
No. of ribs with 3 studs per rib;		$N_{r3} = 0$				
Total number of studs;		$N_{prov} = N_{r1} + 2$	$\times N_{r2} + 3 \times N_{r3}$	= 17		

	Project				Job Ref.	
	Northeast	Metropolitan Reg	ional Vocational	High School	2019	9-091
	Section				Sheet no./rev.	
E i B i C	M	SBA Design Dev	elopment Submis	sion	,	24
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Group effect factor for 1 stud per rib;	$R_{g1} = 1.00$
Group effect factor for 2 studs per rib;	$R_{g2} = 0.85$
Group effect factor for 3 studs per rib;	$R_{g3} = 0.70$
Value of e_{mid-ht} is less than 2 in (51 mm)	
Position effect factor for deck perpendicular;	$R_{p} = 0.60$
Nom. strength of one stud with 1 stud per rib;	$Q_{n1} = min(0.5 \times A_{sa} \times \sqrt{(f'_c \times E_c)}, R_{g1} \times R_p \times A_{sa} \times F_u) = 17.230 \text{ kips}$
Nom. strength of one stud with 2 studs per rib;	$Q_{n2} = min(0.5 \times A_{sa} \times \sqrt{(f'_c \times E_c)}, R_{g2} \times R_p \times A_{sa} \times F_u) = 14.645 \text{ kips}$
Nom. strength of one stud with 3 studs per rib;	$Q_{n3} = min(0.5 \times A_{sa} \times \sqrt{(f'_c \times E_c)} , R_{g3} \times R_p \times A_{sa} \times F_u) = \textbf{12.061} \text{ kips}$
Total strength of provided steel anchors;	$S_{sc} = N_{r1} \times Q_{n1} + 2 \times N_{r2} \times Q_{n2} + 3 \times N_{r3} \times Q_{n3} = 292.90 \text{ kips}$
Resistance of concrete flange;	$C_{cf} = 0.85 \times f_{c}^{*} \times A_{c} = 1193.400 \text{ kips}$
Resistance of steel beam;	$T_{sb} = A \times F_y = 810.000 \text{ kips}$
Beam/slab interface shear force;	$C = min(C_{cf}, T_{sb}) = 810.000 kips$
Strength of studs is less than max	ximum interface shear force therefore partial composite action takes place
Strength check at partial composite action	
Actual net tensile force ;	$V_{\rm h} = C = $ 810.000 kips
Assuming plastic neutral axis at the bottom of the s	teel beam flange.
Resultant compressive force at flange bottom;	$P_{yf} = b_f \times t_f \times F_y = 177.003 \text{ kips}$
Net force at steel and concrete interface;	$C_{net} = T_{sb} - 2 \times P_{yf} = 455.995 \text{ kips}$
	PNA is in the web of the I Section
Shear connection force;	$F_{shear} = S_{sc} = 292.90 \text{ kips}$
Total depth of concrete at full stress;	$d_{c} = F_{shear} / (0.85 \times f_{c}^{*} \times b) = 0.798$ in
Depth of compression from top of the steel flange;	$t' = A / (2 \times t_w) - b_f \times t_f / t_w - 0.85 \times f'_c / F_y \times b \times d_c / (2 \times t_w) + t_f = 4.634 \text{ in}$
Tension	
Bottom flange component;	$F_{bf} = F_y \times b_f \times t_f = 177.003 \text{ kips}$
Moment capacity of bottom flange;	$M_{bf} = F_{bf} \times (d - (t_f/2) - t') = 276.030 \text{ kip}_ft$
Web component;	$F_{web_t} = F_y \times (A - (2 \times b_f \times t_f) - (t' - t_f) \times t_w) = 374.450 \text{ kips}$
Moment capacity of web;	$M_{web_t} = F_{web_t} \times (d - t' - t_f)/2 = 288.032 \text{ kip_ft}$
Compression	
Web component;	$F_{web_c} = F_y \times (t'-t_f) \times t_w = 81.545 \text{ kips}$
Moment capacity of web;	$M_{web_c} = F_{web_c} \times (t' - t_f)/2 = 14.029 \text{ kip_ft}$
Top flange component;	$F_{tf} = F_y \times b_f \times t_f = 177.003 \text{ kips}$
Moment capacity of top flange;	$M_{tf} = F_{tf} \times (t' - t_{f}/2) = 64.626 \text{ kip}_{ft}$
Concrete flange component;	$F_{cf} = 0.85 \times f_{c}^{*} \times b \times d_{c} = 292.904 \text{ kips}$
Moment capacity of concrete flange;	$M_{cf} = F_{cf} \times (t - d_c/2 + t') = 231.518 \text{ kip_ft}$
Design flexural strength of beam;	$M_{\text{comp n}} = \phi_b \times (M_{bf} + M_{web t} + M_{web c} + M_{tf} + M_{cf}) = 786.811 \text{ kip_ft}$
Required flexural strength;	$M_{comp_u} = 387.166 \text{ kip_ft}$
	PASS - Beam bending at partial composite stage
Check for shear	
Design shear strength;	$V_{comp_n} = V_{constr_n} = 251.694 \text{ kips}$

FINA	Project Northea	st Metropolitan Re	gional Vocation	al High School	Job Ref.	019-091
	Section				Sheet no./rev. 25	
		MSBA Design De	velopment Subi	nission		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/20
Required shear strength;		$V_{comp_u} = 43.0$	19 kips			
			PASS - I	Beam shear at par	tial composit	e stage load
Check for deflection (Commenta	ry section I3.1)					
Calculation of immediate constru-	ction stage defle	ection;				
Deflection due to dead load;		$\Delta_{\text{short D}} = 5 \times \chi$	$v_{constr D} \times L^4$ /	$(384 \times E_{\rm S} \times I_{\rm x}) = 0$	0.5262 in	
Amount of beam camber;		$\Delta_{\text{camber}} = 0.000$) in			
		PASS - The can	nber is less th	an the constructio	n stage dead	load deflect
Deflection due to construction liv	e load;	$\Delta_2 = 5 \times W_{const}$	_{r L} × L ⁴ / (384	\times E _s \times I _x) = 0.193	1 in	-
Net total construction stage deflect	tion;	$\Delta_{\text{short}} = \Delta_{\text{short D}}$	-			
For short term loading:-			2 64111061			
Short term modular ratio;		$n_{s} = E_{s} / E_{c} = 1$	11.8			
Depth of neutral axis from top of	concrete:	3 5 6				
$y_s = [b \times (t-h_r)/n_s \times (t-h_r)/2 + A \times (t-$		$-)/n_{+}+A$				
		$y_s = 7.051$ in				
Moment of inertia of fully compo	site section:	<i>y</i> s <i>noci</i> m				
$I_s = I_x + A \times (d/2 + t - y_s)^2 + b \times (t - h_s)^2$		$(t - h)/n \times (v - t)$	$(t_h)/2)^2$			
$\mathbf{r}_{s} = \mathbf{r}_{x} + \mathbf{r}_{s} \cdot (\mathbf{u}_{z} + \mathbf{r}_{s}) + \mathbf{o}_{s} \cdot (\mathbf{r}_{s})$	$(12^{10} n_{s}) + 0^{11}$	$I_s = 3875 \text{ in}^4$	$(\mathbf{r} \mathbf{n}_{\mathbf{r}})/2)$			
Effective mt of inertia for partially	composite.	5	$T + \sqrt{F}$	$C) \times (I_s - I_x)] = ;21$	51 2. in ⁴	
Proportion of live load which is sl	-	$r_{L s} = 67 \%$	IX VI shear	$(\mathbf{I}_{S} \mathbf{I}_{X})$	51.2 , III	
Deflection due to short term live l		=	×w •×I	4 / (384 × E _S × I _{s ef}	m) = 0 4059 ir	,
For long term loading:-	uau,	$\Delta L_s = J \wedge I L_s$	$\wedge w_{comp} \perp \wedge L$	$(304 \times \text{Ls} \times 1_{\text{s}_{el}})$	f) - 0.4037 II	1
Long term concrete modulus as %	of short term:	$r_{E 1} = 50 \%$				
Long term modular ratio;	,	$n_l = E_S / (E_c \times$	$(r_{\rm E}) = 23.5$			
Depth of neutral axis from top of	concrete:					
$y_l = [b \times (t-h_r)/n_l \times (t-h_r)/2 + A \times (t+h_r)/2 + A \times (t+$	-)/n+A]				
$\mathbf{y}_1 = \begin{bmatrix} 0 & (\mathbf{r} \cdot \mathbf{n}_{\mathbf{r}}) & \mathbf{n}_1 & (\mathbf{r} \cdot \mathbf{n}_{\mathbf{r}}) & 2 & \mathbf{r} \cdot \mathbf{r} & (\mathbf{r} \cdot \mathbf{n}_{\mathbf{r}}) \end{bmatrix}$		$y_1 = 9.653$ in				
Moment of inertia of fully compo	site section.	y ₁ 9.055 m				
$I_l = I_x + A \times (d/2 + t - y_l)^2 + b \times (t - h_r)^2$		$(t - h)/n \times (v - (t))$	$(-h)/2)^2$			
$\Gamma_1 = \Gamma_1 = \Gamma_1 = (\alpha (2 + \epsilon) \Gamma_1) = 0$ ($\epsilon = \Gamma_1$) (12 m) = 0	$I_1 = 3212 \text{ in}^4$	(m _r) (–)			
Effective mt of inertia for partially	<i>i</i> composite:		$T + \sqrt{F} / T$	$(C) \times (I_1 - I_x) = 185$	52.1 in ⁴	
Proportion of live load which is lo	-	$r_{L_1} = 1 - r_{L_s} =$		$(\mathbf{r}_1 \mathbf{r}_X) = 10$		
Deflection due to long term live lo	-			/ $(384 \times E_S \times I_{l eff})$	a) = 0 2322 in	
-			1 =			
Dead load due to parallel wall & s				$(b_2)/2) = 150.000$	10/11	
Long term deflection due to super	-		· · · · · · · · · · · · · · · · · · ·		055 :	
Wall parallel to span and superim	posed dead;	· _		$\times E_{\rm S} \times I_{\rm l_{eff}} = 0.1$		_
Wall perpendicular to span;		$\Delta_5 = (W_{w_perp} \times$	$(\mathbf{b}_1 + \mathbf{b}_2) / 2) \times$	$L^3 / (48 \times E_S \times I_{l_e})$	eff) = 0.0000 1	n
Combined deflections						
Net total construction stage deflect	tion;	$\Delta_{\text{short}} = \Delta_{\text{short}_D}$				
Net total long term deflection;		$\Delta_{\text{long}} = \Delta_{\text{short D}}$	$+\Delta_{I}$ + Δ_{I} + Δ_{I} +	+ Δ_4 + Δ_5 - Δ_{camber}	= 1.270 in	

	Project				Job Ref.	
	Northeast 1	Metropolitan Reg	ional Vocational I	High School	2019	9-091
	Section				Sheet no./rev.	
5	M	SBA Design Dev	elopment Submis	sion		26
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Combined short and long term live load deflectn;	$\Delta_{\text{live}} = \Delta_{\text{L}_s} + \Delta_{\text{L}_l} = 0.638 \text{ in}$
Net long term dead and super imposed dead defln;	$\Delta_{\text{dead}} = \Delta_{\text{short}_D} + \Delta_4 + \Delta_5 - \Delta_{\text{camber}} = 0.632$ in
Post composite deflection;	$\Delta_{\text{comp}} = \Delta_{\text{L}_s} + \Delta_{\text{L}_l} + \Delta_4 + \Delta_5 = 0.744 \text{ in}$
Allowable max deflection;	$\Delta_{\text{Allow}} = 1.500 \text{ in}$

PASS - Deflection less than allowable

Arrangement of steel anchor

Note - for non-uniform stud layouts a higher concentration of studs should be located towards the ends of the beam;

3. Sample Steel Column

Column and loading details

Column details	
Column section;	HSS 12x12x3/8
Design loading	
Required axial strength;	$P_r = 250$ kips; (Compression)
Moment about x axis at end 1;	$M_{x1} = 0.0$ kips_ft
Moment about x axis at end 2;	$M_{x2} = 0.0 \text{ kips_ft}$
Maximum moment about x axis;	$M_x = max(abs(M_{x1}), abs(M_{x2})) = 0.0 kips_ft$
Moment about y axis at end 1;	$M_{y1} = 0.0 \text{ kips_ft}$
Moment about y axis at end 2;	$M_{y2} = 0.0$ kips_ft
Maximum moment about y axis;	$M_y = max(abs(M_{y1}), abs(M_{y2})) = 0.0 kips_ft$
Maximum shear force parallel to y axis;	$V_{ry} = 0.0$ kips
Maximum shear force parallel to x axis;	$V_{rx} = 0.0$ kips
Material details	
Steel grade;	A500 Gr. C
Yield strength;	$F_y = 50$ ksi
Ultimate strength;	$F_u = 62$ ksi
Modulus of elasticity;	E = 29000 ksi
Shear modulus of elasticity;	G = 11200 ksi
Unbraced lengths	
For buckling about x axis;	$L_x = 240$ in
For buckling about y axis;	$L_y = 240$ in
For torsional buckling;	$L_z = 240$ in

That	Project Northeast	Metropolitan Reg	gional Vocationa	al High School	Job Ref.	019-091	
DIR T	Section		5		Sheet no./rev. 27		
Engineers Design Croups		ASBA Design De	1	nission			
Engineers Design Group Inc.	Calc. by AA	Date 07/20/2022	Chk'd by MD	Date 07/27/2022	App'd by MD	Date 07/27/20	
Effective length factors							
For buckling about x axis;		$K_x = 1.00$					
For buckling about y axis;		$K_y = 1.00$					
For torsional buckling;		$K_z = 1.00$					
Section classification							
Section classification for local bu	ıckling (cl. B4)						
Critical flange width;		$b = b_f - 3 \times t =$					
Critical web width;		$h = d - 3 \times t =$					
Width to thickness ratio of flange	· · ·	$\lambda_{f_c} = b / t = 31$					
Width to thickness ratio of web (c	1 ,.	$\lambda_{w_c} = h / t = 3$					
Width to thickness ratio of flange		$\lambda_{f_{f_x}} = b / t = 3$					
Width to thickness ratio of web (n		$\lambda_{w_{fx}} = h / t = 3$					
Width to thickness ratio of flange		_ ,					
Width to thickness ratio of web (n	moi nexure);	$\lambda_{w_{fy}} = b / t = 3$	1.304				
Compression		1 - 1.40	(E / E) - 22 7	16			
Limit for nonslender section;		$\lambda_{r_c} = 1.40 \times \sqrt{100}$	$(\mathbf{L} / \mathbf{F}_{y}) = 33.7$	The section is	nonslender	in compress	
<u>Slenderness</u>						.r 200	
Member slenderness							
Slenderness ratio about x axis;		$SR_x = K_x \times L_x$	/ r _x = 50.7				
Slenderness ratio about y axis;		$SR_y = K_y \times L_y$	$/ r_y = 50.7$				
Reduction factor for slender eler							
Reduction factor for slender elements	ments (E7)	therefore:-					
	ments (E7)	therefore:- $Q = 1.0$					
Reduction factor for slender elen The section does not contain any s	ments (E7)						
Reduction factor for slender elen The section does not contain any s Slender element reduction factor;	ments (E7) slender elements						
Reduction factor for slender eler The section does not contain any s Slender element reduction factor; Compressive strength	ments (E7) slender elements		$((SR_x)^2 = 111.)$	2 ksi			
Reduction factor for slender eler The section does not contain any s Slender element reduction factor; <u>Compressive strength</u> Flexural buckling about x axis (ments (E7) slender elements	Q = 1.0		2 ksi			
Reduction factor for slender eler The section does not contain any s Slender element reduction factor; <u>Compressive strength</u> Flexural buckling about x axis (o Elastic critical buckling stress;	ments (E7) slender elements cl. E3)	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$	0				
Reduction factor for slender eler The section does not contain any s Slender element reduction factor; <u>Compressive strength</u> Flexural buckling about x axis (Elastic critical buckling stress; Reduction factor;	ments (E7) slender elements cl. E3) xis;	Q = 1.0 $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$	0 $658^{Qx \times Fy/Fex}) \times 1$				
Reduction factor for slender elements The section does not contain any section factor; Slender element reduction factor; Compressive strength Flexural buckling about x axis (Elastic critical buckling stress; Reduction factor; Flexural buckling stress about x ax	ments (E7) slender elements cl. E3) kis; h;	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$ $F_{erx} = Q_x \times (0.0)$	0 $658^{Qx \times Fy/Fex}) \times 1$				
Reduction factor for slender eler The section does not contain any s Slender element reduction factor; Compressive strength Flexural buckling about x axis (Elastic critical buckling stress; Reduction factor; Flexural buckling stress about x ax Nominal flexural buckling strengt	ments (E7) slender elements cl. E3) kis; h;	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$ $F_{erx} = Q_x \times (0.0)$	0 658 ^{Qx×Fy/Fex}) ×] = 662.7 kips	F _y = 41.4 ksi			
Reduction factor for slender elem The section does not contain any s Slender element reduction factor; Compressive strength Flexural buckling about x axis (e Elastic critical buckling stress; Reduction factor; Flexural buckling stress about x ax Nominal flexural buckling strengt Flexural buckling about y axis (e	ments (E7) slender elements cl. E3) kis; h;	$Q = 1.0$ $F_{ex} = (\pi^2 \times E) A$ $Q_x = Q = 1.00$ $F_{crx} = Q_x \times (0.0)$ $P_{nx} = F_{crx} \times A_g$	0 $658^{Qx \times Fy/Fex} \times P$ = 662.7 kips $7 (SR_y)^2 = 111.2$	F _y = 41.4 ksi			

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School			2019-091		
	Section				Sheet no./rev.	
F i b i b	M	SBA Design Dev	elopment Submis	sion	,	28
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Nominal flexural buckling strength;

 $P_{ny} = F_{cry} \times A_g = 662.7$ kips

Design compressive strength (cl.E1)

Resistance factor for compression; Design compressive strength;
$$\label{eq:phi} \begin{split} \varphi_c &= \textbf{0.90} \\ P_c &= \varphi_c \times min(P_{nxs},P_{ny}) = \textbf{596.5} \text{ kips} \end{split}$$

PASS - The design compressive strength exceeds the required compressive strength

4. Sample Isolated Reinforced Concrete Column Footing

Footing Analysis

[In accordance with ACI318-19]

Summary results

Density of concrete;

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	243.4			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	3.803	4	0.951	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	173.7	487.6	0.356	Pass
Moment, positive, y-direction	kip_ft	173.7	466.3	0.372	Pass
Shear, one-way, x-direction	kips	52.9	104.8	0.505	Pass
Shear, one-way, y-direction	kips	52.9	101.8	0.520	Pass
Shear, two-way, Col 1	psi	73.546	189.737	0.388	Pass
Min.area of reinf, bot., x-direction	in ²	4.147	5.400		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	11.1		Pass
Min.area of reinf, bot., y-direction	in ²	4.147	5.400		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	11.1		Pass
Pad footing details	I				
Length of footing;	$L_x = 8$	ß ft			
Width of footing;	$L_y = 8$	B ft			
Footing area;	A = L	$u_x \times L_y = 64 \text{ ft}^2$			
Depth of footing;	h = 24	l in			
Depth of soil over footing;	$h_{soil} =$	18 in			

 $\gamma_{conc}=150.0~lb/ft^3$

FIN	Project Northea	st Metropolitan Re	gional Vocation	al High School	Job Ref.)19-091		
	Section	1	0		Sheet no./rev.			
Facility Device County	Parian Crown			MSBA Design Development Submission				
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	07/27/20		
Column no.1 details								
Length of column;		$l_{x1} = 16.00$ in						
Width of column;		$l_{y1} = 16.00$ in						
position in x-axis;		$x_1 = 48.00$ in						
position in y-axis;		$y_1 = 48.00$ in						
Soil Properties								
Gross allowable bearing pressure;		$q_{allow_Gross} = 4$	ksf;					
Density of soil;		$\gamma_{soil} = 120.0$ lb	/ft ³					
Angle of internal friction;		$\phi_b = 30.0 \text{ deg}$						
Design base friction angle;		$\delta_{bb} = 30.0 \text{ deg}$						
Coefficient of base friction;		$\tan(\delta_{bb}) = 0.577$						
Design wall friction angle;		$\delta_b = 15.0 \text{ deg}$						
Passive pressure coefficient (Could	omb);	$K_{P} = \sin(90 - \delta_{b}))]^{2} = 4.97$		$\delta_{\rm b}$) × [1 - $\sqrt{\sin(\phi_{\rm b})}$	$(\phi + \delta_b) \times \sin(\phi)$	o _b) / (sin(90 -		
Dead surcharge load;		$F_{Dsur} = 25 \text{ psf}$						
Live surcharge load;		$F_{Lsur} = 100 \text{ pst}$	2					
Self weight;		$F_{\rm swt} = h \times \gamma_{\rm cond}$	= 300 psf					
Soil weight;		$F_{soil} = h_{soil} \times \gamma_s$	$_{\rm soil} = 180 \; {\rm psf}$					
Column no.1 loads								
Dead load in z;		F _{Dz1} = 75.0 kij	DS					
Live load in z;		$F_{Lz1} = 100.0 \text{ kips}$						
Snow load in z;		F _{Sz1} = 75.0 kip	08					
Footing analysis for soil and stab	ility							
Load combinations per ASCE 7-	10							
1.0D(0.419) 1.0D + 1.0L(0.825)								
1.0D + 1.0L (0.835) 1.0D + 1.0S (0.712)								
1.0D + 1.0S (0.712) 1.0D + 0.75L + 0.75S (0.951)								
Combination 7 results: 1.0D + 0.	75L + 0.75S							
Forces on footing								
				F_{Dsur}) + $\gamma_L \times A \times F$				

IN	Project Northea	ast Metropolitan Reg	gional Vocation	al High School	Job Ref.)19-091	
	Section		-		Sheet no./rev.		
Facility Design Course		MSBA Design De	velopment Subn	nission		30	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	07/27/202	
Moments on footing							
Moment in x-axis, about x is 0;		$M_{dx} = \gamma_D \times (A$	\times (F _{swt} + F _{soil} ·	+ F_{Dsur}) × L_x / 2) +	$\gamma_L \times A \times F_{Ls}$	$_{ur} \times L_x / 2 + \gamma$	
		$\times (F_{Dz1} \times x_1) +$	$\gamma_L \times (F_{Lz1} \times x)$	$(F_{s_1}) + \gamma_s \times (F_{s_{z_1}} \times x_s)$) = 973.5 kip	_ft	
Moment in y-axis, about y is 0;		,		+ F_{Dsur}) × L_y / 2) +	-		
		$\times (F_{Dz1} \times y_1) +$	$\gamma_L \times (F_{Lz1} \times y)$	$(\gamma_1) + \gamma_S \times (F_{Sz1} \times y_1)$) = 973.5 kip	_ft	
Uplift verification							
Vertical force;		$F_{dz} = 243.37 \text{ k}$	ips				
				PASS - Fa	oting is not s	subject to upl	
Bearing resistance							
Eccentricity of base reaction							
Eccentricity of base reaction in x-axi	is;	$e_{dx} = M_{dx} / F_{dz}$	- $L_x / 2 = 0$ in				
Eccentricity of base reaction in y-axi	is;	$e_{dy} = M_{dy} / F_{dz}$	- $L_y / 2 = 0$ in				
Pad base pressures							
		$q_1 = F_{dz} \times (1 -$	$6 \times e_{dx} / L_x - 6$	$5 \times e_{dv} / L_v) / (L_x \times$	L_v) = 3.803]	csf	
		$q_2 = F_{dz} \times (1 -$	$6 \times e_{dx} / L_x + 6$	$6 \times e_{dy} / L_y) / (L_x \times$	$L_y) = 3.803$	ksf	
		$q_3 = F_{dz} \times (1 +$	$6 \times e_{dx} / L_x$ - 6	$6 \times e_{dy} / L_y) / (L_x >$	L_y) = 3.803	ksf	
		$q_4 = F_{dz} \times (1 +$	$6 \times e_{dx} / L_x +$	$6 \times e_{dy} / L_y) / (L_x)$	$(L_y) = 3.803$	ksf	
Minimum base pressure;		$q_{\min} = \min(q_1, q_2)$	$(q_2,q_3,q_4) = 3.80$	03 ksf			
Maximum base pressure;		$q_{\max} = \max(q_1,$	$(q_2,q_3,q_4) = 3.8$	03 ksf			
Allowable Bearing Capacity							
Allowable bearing capacity;		$q_{allow} = q_{allow_G}$	$_{\rm ross}$ = 4 ksf				
		$q_{max} / q_{allow} = 0.951$					
		PASS	- Allowable b	bearing capacity e	xceeds desigr	n base pressu	
Footing Design							
				[In ac	cordance wi	th ACI318-1	
Material details							
Compressive strength of concrete;		f' _c = 4000 psi					
Yield strength of reinforcement;	(a 1 a -)	$f_y = 60000 \text{ psi}$					
Compression-controlled strain limit	(21.2.2);	$\varepsilon_{ty} = 0.00200$					
		$\mathbf{c}_{\mathrm{nom}_{t}} = 3$ in					
Cover to top of footing;		• •					
Cover to top of footing; Cover to side of footing;		$c_{nom_s} = 3$ in					
Cover to top of footing; Cover to side of footing; Cover to bottom of footing;		$c_{nom_b} = 3$ in	+				
Cover to top of footing; Cover to side of footing;		—	t				

DDC	Project Northea	ast Metropolitan Reg	zional Vocation	al High School	Job Ref.	019-091		
FIR T	Section				Sheet no./rev.			
		MSBA Design De	velopment Subr	nission	31			
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	07/27/20		
Analysis and design of concrete fo	oting							
Load combinations per ASCE 7-10)							
1.4D (0.212)								
1.2D + 1.6L + 0.5Lr (0.520)								
Combination 2 results: 1.2D + 1.6	L + 0.5Lr							
Forces on footing								
Ultimate force in z-axis;		$F_{uz} = \gamma_D \times \mathbf{A} \times$ $= 299.0 kips$	$(F_{swt} + F_{soil} +$	F_{Dsur}) + $\gamma_L \times A \times F$	$F_{Lsur} + \gamma_D \times F_1$	$_{Dz1} + \gamma_L \times F_L$		
Moments on footing								
Ultimate moment in x-axis, about x	is 0;	$M_{ux} = \gamma_D \times (A$	$\times (F_{swt} + F_{soil})$	$+ F_{\text{Dsur}}) \times L_x / 2) +$	$\gamma_L \times \mathbf{A} \times F_{Ls}$	$L_{\rm ur} \times L_{\rm x} / 2 +$		
		$\times (F_{Dz1} \times x_1) +$	$\gamma_L \times (F_{Lz1} \times x$	1) = 1196.1 kip_ft				
Ultimate moment in y-axis, about y	is 0;	$\begin{split} M_{uy} &= \gamma_D \times (A \times (F_{swt} + F_{soil} + F_{Dsur}) \times L_y / 2) + \gamma_L \times A \times F_{Lsur} \times L_y / 2 + \gamma \\ &\times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) = 1196.1 \text{ kip ft} \end{split}$						
Eccentricity of base reaction								
Eccentricity of base reaction in x-axis;		$\mathbf{e}_{ux} = \mathbf{M}_{ux} / \mathbf{F}_{uz} - \mathbf{L}_x / 2 = 0$ in						
Eccentricity of base reaction in y-ax	is;	$\mathbf{e}_{uy} = \mathbf{M}_{uy} / \mathbf{F}_{uz} - \mathbf{L}_y / 2 = 0$ in						
Pad base pressures								
		$q_{u1} = F_{uz} \times (1 - $	$6 \times e_{ux} / L_x$ -	$6 \times e_{uy} / L_y) / (L_x >$	$(L_y) = 4.672$	ksf		
		$q_{u2} = F_{uz} \times (1 - $	$6 \times e_{ux} / L_x +$	$6 \times e_{uy} / L_y) / (L_x)$	$(\times L_y) = 4.672$	ksf		
		$q_{u3} = F_{uz} \times (1 - $	$+6 \times e_{ux} / L_x -$	$6 \times e_{uy} / L_y) / (L_x)$	$(\times L_y) = 4.672$	ksf		
		$q_{u4} = F_{uz} \times (1 - $	$+6 \times e_{ux} / L_x +$	$-6 \times e_{uy} / L_y) / (L_x)$	$(\times L_y) = 4.672$	2 ksf		
Minimum ultimate base pressure;		$q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 4.672 \text{ ksf}$						
Maximum ultimate base pressure;		$q_{umax} = max(q_u)$	$(1, q_{u2}, q_{u3}, q_{u4}) =$	= 4.672 ksf				
Moment design, x direction, positi	ve moment							
Ultimate bending moment;		$M_{u.x.max} = 173.$	679 kip_ft					
Tension reinforcement provided;		9 No.7 bottom	bars (11.1 in	c/c)				
Area of tension reinforcement provid	led;	$A_{sx.bot.prov} = 5.4$	in ²					
Minimum area of reinforcement (8.6	5.1.1);	$A_{s.min} = 0.0018$	•					
				of reinforcement	provided exc	ceeds minim		
Maximum spacing of reinforcement		$s_{max} = min(2 \times$						
	1			einforcement spa	cing exceeds	actual spac		
Depth to tension reinforcement;		$\mathbf{d} = \mathbf{h} - \mathbf{c}_{\mathrm{nom}_b} - \mathbf{c}_{\mathrm{nom}_b$						
Depth of compression block;		-	$f_{y} / (0.85 \times f_{y})$	$_{c} \times L_{y}) = 0.993$ in				
Neutral axis factor;		$\beta_1 = 0.85$	1.(0)					
Depth to neutral axis;		$\mathbf{c} = \mathbf{a} / \beta_1 = 1.$		0.4002				
Strain in tensile reinforcement;		$\varepsilon_t = 0.003 \times d$	c = 0.003 = 0	.04982				
Minimum tensile strain(8.3.3.1);		$\varepsilon_{\min} = \varepsilon_{ty} + 0.0$	02 - 0.00700					

	Project			W.1.0.1 .	Job Ref.	10.001	
		Metropolitan Reg	ional Vocational	High School)19-091	
	Section	ASBA Design Dev	alanmant Suhmi	ssion	Sheet no./rev.	32	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
Linginoois boorgin oroop	AA	07/20/2022	MD	07/27/2022	MD	07/27/20	
Nominal moment capacity;		1	•	$) = 541.787 \text{ kip}_{2}$			
Flexural strength reduction factor;				$\epsilon_{t} - \epsilon_{ty}) / (0.003), (0.003)$	(0.65), (0.9) = (0.65)	0.900	
Design moment capacity;		$\phi M_n = \phi_f \times M_n$		tt			
		$M_{u.x.max} / \phi M_n =$					
		PAS	S - Design mon	nent capacity exc	ceeds ultimat	e moment l	
One-way shear design, x direction	1						
Ultimate shear force;		V _{u.x} = 52.918 k	ips				
Depth to reinforcement;		$d_v = h - c_{nom_b} - b$	$\phi_{x.bot} / 2 = 20.5$	562 in			
Size effect factor (22.5.5.1.3);		$\lambda_{\rm s}~=1$					
Ratio of longitudinal reinforcement	;	$\rho_w = A_{sx.bot.prov}$	$(L_y \Box d_v) = 0.$	00274			
Shear strength reduction factor;		$\phi_v = 0.75$					
Nominal shear capacity (Eq. 22.5.5	.1);	$V_n = \min(8 \times \lambda)$	$_{\rm s} \times \lambda \times (\rho_{\rm w})^{1/3} \times$	$\sqrt{(\mathbf{f}_{c} \times 1 \text{ psi}) \times \mathbf{I}}$	$L_v \times d_v, 5 \times \lambda$	$\times \sqrt{\mathbf{f}_{c} \times 1}$	
		\times L _y \times d _v) = 13	9.685 kips				
Design shear capacity;		$\phi V_n = \phi_v \times V_n = 104.764 \text{ kips}$					
		$V_{u.x} / \phi V_n = 0.5$	05				
			PASS - Design	n shear capacity o	exceeds ultin	nate shear l	
Moment design, y direction, posit	ive moment						
Ultimate bending moment;	ive moment	$M_{u.y.max} = 173.0$	579 kin ft				
Tension reinforcement provided;		9 No.7 bottom		c)			
Area of tension reinforcement provided,	ided [.]	$A_{sy.bot.prov} = 5.4$		()			
an and navour tennol cellent of ov	ucu,						
	6 1 1).	A = 0.0018	$\times I \times h = 414$	17 in ²			
Minimum area of reinforcement (8.	6.1.1);	$A_{s.min} = 0.0018$			nrovided exc	eeds minin	
Minimum area of reinforcement (8.			PASS - Area o	f reinforcement	provided exc	eeds minin	
	t (8.7.2.2);	$s_{max} = min(2 \times$	<i>PASS - Area o</i> h, 18 in) = 18 i	<i>f reinforcement</i> , n	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcement	t (8.7.2.2);	s _{max} = min(2 × ASS - Maximum	<i>PASS - Area o</i> h, 18 in) = 18 i <i>permissible re</i>	f reinforcement _i n inforcement spac	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcemen Depth to tension reinforcement;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - b$	PASS - Area o h, 18 in) = 18 is permissible real $\phi_{x,bot} - \phi_{y,bot} / 2$	f reinforcement ₎ n inforcement spac = 19.687 in	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcemen Depth to tension reinforcement; Depth of compression block;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy.bot.prov} \times a$	PASS - Area o h, 18 in) = 18 is permissible real $\phi_{x,bot} - \phi_{y,bot} / 2$	f reinforcement _i n inforcement spac	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcemen Depth to tension reinforcement; Depth of compression block; Neutral axis factor;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$	$PASS - Area ofh, 18 in) = 18 inpermissible real\phi_{x,bot} - \phi_{y,bot} / 2f_y / (0.85 \times f_c)$	f reinforcement ₎ n inforcement spac = 19.687 in	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcemen Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$	$PASS - Area ofh, 18 in) = 18 inpermissible real\phi_{x,bot} - \phi_{y,bot} / 2f_y / (0.85 \times f_c \approx68 in$	f reinforcement f inforcement space = 19.687 in $(L_x) = 0.993$ in	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy.bot.prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / b_t$	PASS - Area o h, 18 in) = 18 is permissible rea $\phi_{x.bot} - \phi_{y.bot} / 2$ $f_y / (0.85 \times f_c > 1000 \text{ m}^2)$ 68 in c - 0.003 = 0.0	f reinforcement f inforcement space = 19.687 in $(L_x) = 0.993$ in	-		
Minimum area of reinforcement (8. Maximum spacing of reinforcemen Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$	PASS - Area o h, 18 in) = 18 in permissible real $\phi_{x,bot} - \phi_{y,bot} / 2$ f _y / (0.85 × f _c > 68 in c - 0.003 = 0.0 3 = 0.00500	f reinforcement f inforcement space = 19.687 in $(L_x) = 0.993$ in	cing exceeds	actual spac	
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / \epsilon_{min} = \epsilon_{ty} + 0.00$	PASS - Area of h, 18 in) = 18 in permissible ready $\phi_{x,bot} - \phi_{y,bot} / 2$ $f_y / (0.85 \times f_c)$ 68 in c - 0.003 = 0.0 3 = 0.00500 PASS	f reinforcement f inforcement space = 19.687 in \times L _x) = 0.993 in 4757	cing exceeds exceeds min	actual spac	
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement; Minimum tensile strain(8.3.3.1);	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / \epsilon_{min} = \epsilon_{ty} + 0.000$ $M_n = A_{sy,bot,prov}$	PASS - Area of h, 18 in) = 18 in permissible ready $\phi_{x,bot} - \phi_{y,bot} / 2$ $f_y / (0.85 \times f_c)^2$ 68 in c - 0.003 = 0.0 /3 = 0.00500 PASS × f_y × (d - a / 2)	f reinforcement f inforcement space = 19.687 in $\times L_x) = 0.993$ in 4757 f - Tensile strain	cing exceeds exceeds min ft	actual spac	
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement; Minimum tensile strain(8.3.3.1); Nominal moment capacity;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / \epsilon_{min} = \epsilon_{ty} + 0.000$ $M_n = A_{sy,bot,prov}$	PASS - Area of h, 18 in) = 18 in permissible ready $\phi_{x,bot} - \phi_{y,bot} / 2$ $f_y / (0.85 \times f_c)$ 68 in c - 0.003 = 0.0 3 = 0.00500 PASS × f_y × (d - a / 2) 0.65 + 0.25 × (a)	f reinforcement f inforcement space = 19.687 in $\times L_x$ = 0.993 in 4757 f - Tensile strain) = 518.162 kip_(0.003), (0.003	cing exceeds exceeds min ft	actual spac	
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement; Minimum tensile strain(8.3.3.1); Nominal moment capacity; Flexural strength reduction factor;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / \epsilon_{min} = \epsilon_{ty} + 0.00$ $M_n = A_{sy,bot,prov}$ $\phi_f = min(max(0))$	$PASS - Area ofh, 18 in) = 18 inpermissible ready\phi_{x,bot} - \phi_{y,bot} / 2fy / (0.85 × fc >68 inc - 0.003 = 0.03 = 0.00500PASS× fy × (d - a / 20.65 + 0.25 × (a= 466.346 kip_$	f reinforcement f inforcement space = 19.687 in $\times L_x$ = 0.993 in 4757 f - Tensile strain) = 518.162 kip_(0.003), (0.003	cing exceeds exceeds min ft	actual spac imum requ	
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement; Minimum tensile strain(8.3.3.1); Nominal moment capacity; Flexural strength reduction factor;	t (8.7.2.2);	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / \epsilon_{min} = \epsilon_{ty} + 0.00$ $M_n = A_{sy,bot,prov}$ $\phi_f = min(max(0 + M_n))$ $M_{u,y,max} / \phi_m = 0$	$PASS - Area ofh, 18 in) = 18 inpermissible ready\phi_{x,bot} - \phi_{y,bot} / 2f_y / (0.85 \times f_c = 2)68 inc - 0.003 = 0.003 = 0.00500PASS\times f_y \times (d - a / 2)0.65 + 0.25 × (a)= 466.346 kip_= 0.372$	f reinforcement f inforcement space = 19.687 in $\times L_x$ = 0.993 in 4757 f - Tensile strain) = 518.162 kip_(0.003), (0.003	cing exceeds exceeds min ft 0.65), 0.9) = 0	actual spac imum requ 0.900	
Minimum area of reinforcement (8. Maximum spacing of reinforcement Depth to tension reinforcement; Depth of compression block; Neutral axis factor; Depth to neutral axis; Strain in tensile reinforcement; Minimum tensile strain(8.3.3.1); Nominal moment capacity; Flexural strength reduction factor;	t (8.7.2.2); PA	$s_{max} = min(2 \times ASS - Maximum)$ $d = h - c_{nom_b} - a = A_{sy,bot,prov} \times \beta_1 = 0.85$ $c = a / \beta_1 = 1.1$ $\epsilon_t = 0.003 \times d / \epsilon_{min} = \epsilon_{ty} + 0.00$ $M_n = A_{sy,bot,prov}$ $\phi_f = min(max(0 + M_n))$ $M_{u,y,max} / \phi_m = 0$	$PASS - Area ofh, 18 in) = 18 inpermissible ready\phi_{x,bot} - \phi_{y,bot} / 2f_y / (0.85 \times f_c = 2)68 inc - 0.003 = 0.003 = 0.00500PASS\times f_y \times (d - a / 2)0.65 + 0.25 × (a)= 466.346 kip_= 0.372$	f reinforcement f inforcement space = 19.687 in $\times L_x$ = 0.993 in 4757 f - Tensile strain) = 518.162 kip_(0.003), (0) ft	cing exceeds exceeds min ft 0.65), 0.9) = 0	actual spac imum requ 0.900	

	Project	t Metropolitan Reg	ional Vocationa	l High School	Job Ref.	19-091		
	Section		Sheet no./rev.	17-071				
		MSBA Design Dev	elopment Subm	ission		33		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2		
Depth to reinforcement;		$d_v = h - c_{nom b} - $	$\phi_{x,bot} - \phi_{y,bot} / 2$	2 = 19.687 in				
Size effect factor (22.5.5.1.3);		$\lambda_{s} = 1$						
Ratio of longitudinal reinforcement	•	$\rho_w = A_{sy.bot.prov} /$	$(L_x \times d_v) = 0.$.00286				
Shear strength reduction factor;		$\phi_v = 0.75$						
Nominal shear capacity (Eq. 22.5.5	.1);	$V_n = min(8 \times \lambda_n)$	$_{\rm s} imes \lambda imes (ho_{\rm w})^{1/3}$	$\times \sqrt{(\mathbf{f}_{c} \times 1 \text{ psi})} \times \mathbf{I}$	$L_x \times d_v, 5 \times \lambda$	$\times \sqrt{\mathbf{f}_{c} \times 1}$		
		\times L _x \times d _v) = 135	5.694 kips					
Design shear capacity;		$\phi \mathbf{V}_{n} = \phi_{v} \times \mathbf{V}_{n} =$	= 101.77 kips					
		$V_{u,y} / \phi V_n = 0.520$						
			PASS - Desig	n shear capacity	exceeds ultim	ate shear		
Two-way shear design at column	1							
Depth to reinforcement;		$d_{v2} = 20.125$ in						
Shear perimeter length (22.6.4); Shear perimeter width (22.6.4);		$l_{xp} = 36.125$ in						
		$l_{yp} = 36.125$ in						
Shear perimeter (22.6.4);		$b_0 = 2 \times (l_{x1} + d_{v2}) + 2 \times (l_{y1} + d_{v2}) = 144.500$ in						
Shear area;		$A_p = l_{x,perim} \times l_{y,perim} = 1305.016 \text{ in}^2$						
Surcharge loaded area;		$A_{sur} = A_p - l_{x1} \times$	$l_{y1} = 1049.01$	6 in ²				
Ultimate bearing pressure at center	of shear area;	$q_{up.avg} = 4.672 \ k$	sf					
Ultimate shear load;		-		$\gamma_{\rm D} \times A_{\rm p} \times F_{\rm swt} + \gamma_{\rm p}$		$+\gamma_{\rm D} \times A_{\rm su}$		
			-	$_{\rm vg} \times A_{\rm p} = 213.877$	kips			
Ultimate shear stress from vertical	-			si) = 73.546 psi				
Column geometry factor (Table 22.		$\beta = l_{y1} / l_{x1} = 1.$	00					
Column location factor (22.6.5.3);		$\alpha_s = 40$						
Size effect factor (22.5.5.1.3);		$\lambda_{\rm s}~=1$						
Concrete shear strength (22.6.5.2);		1 , .	· · · · · · · · · · · · · · · · · · ·	$(f_c \times 1 \text{ psi}) = 379.$	-			
		1 (,	$\langle \lambda \times \sqrt{\mathbf{f}_{c} \times 1 \text{ psi}}$) = 478.828 p	si		
		$v_{cpc} = 4 \times \lambda_s \times \lambda$	$\lambda \times \sqrt{\mathbf{f}_{c} \times 1} \mathbf{p}_{c}$	si) = 252.982 psi				
		$v_{cp} = min(v_{cpa}, v)$	$v_{cpb}, v_{cpc}) = 252$.982 psi				
Shear strength reduction factor;		$\phi_{\rm v}=0.75$						
Nominal shear stress capacity (Eq.	22.6.1.2);	$v_n = v_{cp} = 252.9$	982 psi					
Design shear stress capacity (8.5.1.	1(d));	$\phi \mathbf{v}_n = \phi_v \times \mathbf{v}_n =$	189.737 psi					
		$v_{ug} / \phi v_n = 0.38$	0					

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019	9-091
	Section				Sheet no./rev.	
	M	SBA Design Dev	elopment Submis	sion		34
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

5. Sample Continuous Reinforced Concrete Strip Footing

Footing Analysis

[In accordance with ACI318-19]

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	6.9			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	3.435	4	0.859	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, y-direction	kip_ft	0.6	11.8	0.052	Pass
Min.area of reinf, bot., y-direction	in ²	0.259	0.310		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	12.0		Pass

Strip footing details - considering a one meter strip

Length of footing;	$L_x = 1$ ft
Width of footing;	$L_y = 2$ ft
Footing area;	$A = L_x \times L_y = 2 \ ft^2$
Depth of footing;	h = 12 in
Depth of soil over footing;	$h_{soil} = 3.5$ in
Density of concrete;	$\gamma_{conc}=150.0~lb/ft^3$

Wall no.1 details

Width of wall;	$l_{y1} = 12$ in
position in y-axis;	$y_1 = 12$ in

Soil Properties

Gross allowable bearing pressure;	$q_{allow}_{Gross} = 4 \text{ ksf};$
Density of soil;	$\gamma_{soil}=\textbf{120.0}~lb/ft^3$
Angle of internal friction;	$\phi_b = \textbf{30.0} \text{ deg}$
Design base friction angle;	$\delta_{bb} = 30.0 \text{ deg}$
Coefficient of base friction;	$tan(\delta_{bb}) = \textbf{0.577}$
Self weight; Soil weight;	$\begin{split} F_{swt} &= h \times \gamma_{conc} = \textbf{150} \ psf \\ F_{soil} &= h_{soil} \times \gamma_{soil} = \textbf{35} \ psf \end{split}$

LINC	Project Northeast Metropolitan Regional Vocational High School				Job Ref. 2019-091		
LLRT	Section		-		Sheet no./rev.		
Engineers Design Group Inc.		MSBA Design Development Submission				35	
	Calc. by AA	Date 07/20/2022	Chk'd by MD	Date 07/27/2022	App'd by MD	Date 07/27/20	
Wall no.1 loads per linear foot							
Dead load in z;		$F_{Dz1} = 2.0 \text{ kips}$	5				
Live load in z;		$F_{Lz1} = 4.0 \text{ kips}$ $F_{Sz1} = 2.0 \text{ kips}$					
Snow load in z;							
Footing analysis for soil and sta	bility						
Load combinations per ASCE 7	-10						
1.0D (0.296)							
1.0D + 1.0L (0.796)							
1.0D + 1.0Lr (0.296)							
1.0D + 1.0S (0.546)							
1.0D + 1.0R (0.296)							
1.0D + 0.75L + 0.75Lr (0.671) 1.0D + 0.75L + 0.75S (0.850)							
1.0D + 0.75L + 0.75S (0.859) 1.0D + 0.75L + 0.75B (0.671)							
1.0D + 0.75L + 0.75R (0.671) Combination 7 results: 1.0D + 0	751 ± 0.759						
Forces on footing per linear foot Force in z-axis;	L	$F_{dz} = \gamma_D \times A \times$	$(F_{swt} + F_{soil}) +$	$-\gamma_{\rm D} imes F_{\rm Dz1} + \gamma_{\rm L} imes F$	$F_{Lz1} + \gamma_S \times F_S$	_{z1} = 6.9 kips	
Moments on footing per linear f	oot						
Moment in y-axis, about y is 0;		$\begin{split} M_{dy} &= \gamma_D \times (A \\ &+ \gamma_S \times (F_{Sz1} \times$		$(1 \times L_y / 2) + \gamma_D \times (I)$	$F_{Dz1} \times y_1) + \gamma$	$_{\rm L} \times ({\rm F}_{\rm Lz1} \times {\rm y})$	
Uplift verification							
Vertical force;		F _{dz} = 6.87 kips	5				
				PASS - Fo	ooting is not s	subject to up	
Stability against sliding							
Resistance due to base friction;		$F_{RFriction} = max$	$k(F_{dz}, 0 \text{ kN}) \times 1$	$\tan(\delta_{bb}) = 3.966 \text{ ki}$	ps		
Bearing resistance							
Eccentricity of base reaction							
Eccentricity of base reaction in y-	axis;	$e_{dy} = M_{dy} / F_{dz}$	- L _y / 2 = 0.00	10 in			
Strip base pressures							
			5 5.	$(L_y \times 1 \text{ ft}) = 3.435$			
				$(L_y \times 1 \text{ ft}) = 3.435$	5 ksf		
Minimum base pressure;		$q_{\min} = \min(q_1, q_2)$					
Maximum base pressure; Allowable bearing capacity		$q_{\max} = \max(q_1)$,q ₂) = 3.435 ks	st			
Allowable bearing capacity;		$q_{allow} = q_{allow}$	$_{\rm ross} = 4 \rm ksf$				
		$q_{max} / q_{allow} = 0$					
		a / a					

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section				Sheet no./rev.	
	MSBA Design Development Submission				36	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

PASS - Allowable bearing capacity exceeds design base pressure

Footing Design

Material details

[In accordance with ACI318-19]

Compressive strength of concrete;	f' _c = 4000 psi		
Yield strength of reinforcement;	f _y = 60000 psi		
Compression-controlled strain limit (21.2.2);	$\epsilon_{ty}=\boldsymbol{0.00200}$		
Cover to top of footing;	$\mathbf{c}_{\text{nom}_t} = 3$ in		
Cover to side of footing;	$c_{nom_s} = 3$ in		
Cover to bottom of footing;	$c_{nom_b} = 3$ in		
Concrete type;	Normal weight		
Concrete modification factor;	$\lambda = 1.00$		
Wall type;	Concrete		

Analysis and design of concrete footing

1.4D (0.015) 1.2D + 1.6L + 0.5Lr (0.047) 1.2D + 1.6L + 0.5S (0.052) 1.2D + 1.6L + 0.5R (0.047) 1.2D + 1.0L + 1.6Lr (0.034) 1.2D + 1.0L + 1.6S (0.051) 1.2D + 1.0L + 1.6R (0.034)

Combination 3 results: 1.2D + 1.6L + 0.5S

Forces on footing per linear foot

Ultimate force in z-axis;

Moments on footing per linear foot

Eccentricity of base reaction

Eccentricity of base reaction in y-axis;

Strip base pressures

Minimum ultimate base pressure; Maximum ultimate base pressure;
$$\begin{split} F_{uz} = \gamma_D \times \mathbf{A} \times (F_{swt} + F_{soil}) + \Box_D \times F_{Dz1} + \Box_L \times F_{Lz1} + \Box_S \times F_{Sz1} = \textbf{10.2} \\ kips \end{split}$$

$$\begin{split} M_{uy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ &+ \gamma_S \times (F_{Sz1} \times y_1) = \textbf{10.2 kip_ft} \end{split}$$

 $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0.000$ in

$$\begin{split} q_{u1} &= F_{uz} \times (1 - 6 \times e_{uy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{5.122 ksf} \\ q_{u2} &= F_{uz} \times (1 + 6 \times e_{uy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{5.122 ksf} \\ q_{umin} &= \min(q_{u1}, q_{u2}) = \textbf{5.122 ksf} \\ q_{umax} &= \max(q_{u1}, q_{u2}) = \textbf{5.122 ksf} \end{split}$$

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
= = = =	Section				Sheet no./rev.	
	MSBA Design Development Submission				37	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	07/27/2022

Ultimate bending moment;	$M_{u.y.max} = 0.612 \text{ kip_ft}$
Tension reinforcement provided;	No.5 bars at 12.0 in c/c bottom
Area of tension reinforcement provided;	$A_{sy,bot,prov} = 0.31 \text{ in}^2$
Minimum area of reinforcement (7.6.1.1);	$A_{s.min} = 0.0018 \times L_x \times h = 0.259 \text{ in}^2$
	PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (7.7.2.3);	$s_{max} = min(3 \times h, 18 in) = 18 in$
i	PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement;	$d = h - c_{nom_b} - \phi_{y,bot} / 2 = 8.688$ in
Depth of compression block;	$a = A_{sy,bot,prov} \times f_y / (0.85 \times f_c \times L_x) = 0.456$ in
Neutral axis factor;	$\beta_1 = 0.85$
Depth to neutral axis;	$c = a / \beta_1 = 0.536$ in
Strain in tensile reinforcement;	$\epsilon_t = 0.003 \times d / c - 0.003 = 0.04559$
Minimum tensile strain(7.3.3.1);	$\varepsilon_{\min} = \varepsilon_{ty} + 0.003 = 0.00500$
	PASS - Tensile strain exceeds minimum required
Nominal moment capacity;	$M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 13.112 \text{ kip_ft}$
Flexural strength reduction factor;	$\phi_{f} = \min(\max(0.65 + 0.25 \times (\epsilon_{t} - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$
Design moment capacity;	$\phi M_n = \phi_f \times M_n = 11.801 \text{ kip_ft}$
	$M_{u.y.max} / \phi M_n = 0.052$
	PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

One-way shear design does not apply. Shear failure plane fall outside extents of foundation.