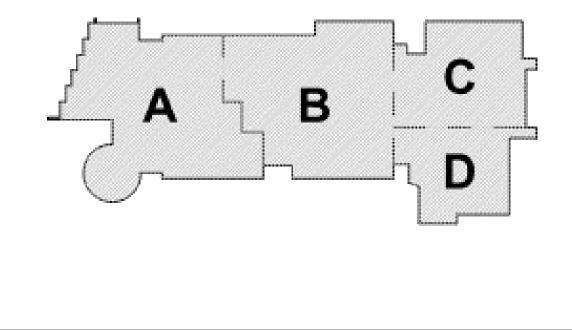
GENERAL REQUIREMENTS

FDC	Project Northeast Metropolitan Regional Vocational High School			Job Ref. 2019-091		
LLAJ	Section MSBA	A 90% Constructi	on Document Sub	mission	Sheet no./rev.	1
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Project Name:

Northeast Metropolitan Regional Vocational High School

MSBA Module 6 Requirements:


MSBA 90% Construction Documents – Structural Loading Calculations

Prepared For: Drummey Rosane Anderson, Inc.

Prepared By: Alexander Auditore, B.S.E. – Engineers Design Group, Inc.

Checked By: Mehul Dhruv, P.E. – Engineers Design Group, Inc.

Project Northeast Metropolitan Regional Vocational High School					Job Ref.	19-091
NIR T	Section		<u>Bioliar</u> + ocation		Sheet no./rev.	
	MS	SBA 90% Construc	tion Document S	ubmission		2
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/202
Table of Contents						
Tuble of Contents						
Project Synopsis						3
Design Codes						4
Geotechnical Recommendations f	for Foundation A	Analysis and Des	ign			4
Project Materials and Strengths						4
Project Materials and Strengths						
Project Materials and Strengths Dead and Live Loading Criteria						
Dead and Live Loading Criteria						5
						5
Dead and Live Loading Criteria						5 6
Dead and Live Loading Criteria Snow Loading Criteria						5 6

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section S			Sheet no./rev.		
E i D i G	MSBA	A 90% Constructi	on Document Sub	omission		3
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Project Synopsis

The project is located in Wakefield, Massachusetts. The main building to be constructed consists of a four-story vocational high school near the existing Northeast Metropolitan Regional Vocational High School. The main building is comprised of four wings, named Areas A - D on the project documents. Areas A consists of the cafeteria/kitchen and acedemic rooms, Area B is the main acedemic wing, Area C holds the auditorium, and Area D the gymnasium. Additional buildings to be constructed consist of a two-story locker building, a single story concessions building, and a single story pre-engineered maintainance garage building.

The majority of the structure will be steel-framed, supported by reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. Each wing has a mezzanine level above the ground floor level that shall be constructed using precast concrete plank, supported by load-bearing concrete-masonry walls and reinforced concrete foundations. All suspsended floor systems above the mezzanine levels will be constructed as a light-weight concrete slab on steel deck, supported by structural steel beams and girders. The roof system in Areas A and B will consist of steel deck, supported by steel beams and girders; the main roof system in Areas C and D will consist of steel deck, supported by open-web steel joists.

The main structure's lateral force resisting system shall mainly consist of ordinary concentric steel braced frames, comprised of hollow-structural steel members. Reinforced concrete-masonry shear walls will be used throughout the building as well. The structure will have an expansion joint, separating Areas A and B from Areas C and D. The combined lateral force resisting system will be designed to resist the loads imparted on the structure from local wind and seismic forces per applicable design codes.

The two-story locker building structure will consist of structural steel beams, supported by load-bearing concrete-masonry walls and reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The second floor system will be constructed as a light-weight concrete slab on deck, supported by steel beams and girders. The roof system will consist of steel deck, supported by steel beams and girders.

The single-story concessions building will consist of pre-fabricated wood trusses, supported by load-bearing reinforced masonry walls and reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The roof system will consist of plywood sheathing, spanning over wood trusses and masonry walls on all sides.

The maintainance garage building will consist of a pre-engineered steel frame superstructure, supported on reinforced concrete foundations. The ground floor shall be constructed as a normal-weight concrete slab on grade. The roof system will consist of steel deck, supported by continuous steel 'Z'-shaped purlins, spanning between steel frames.

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section			Sheet no./rev.		
E i D i O	MSBA	A 90% Constructi	on Document Sub	mission		4
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Design Codes

- 1. Massachusetts State Building Code, 9th Edition
- 2. International Building Code, 2015 Edition
- 3. ASCE 7-10: Minimum Design Loads for Buildings and Other Structures
- 4. ACI 318-14: Building Code Requirements for Structural Concrete
- 5. ACI 530-13: Building Code Requirements for Masonry Structures
- 6. AISC 360-10: Specification for Structural Steel Buildings
- 7. Other codes as required by the design codes listed above

Geotechnical Recommendations for Foundation Analysis and Design

The foundation design for this project shall be done with the recommendations from the soils investigations performed by Lahlaf Geotechnical Consulting, Inc from June, 2021. Their report recommended a maximum net allowable bearing pressure of 4,000 pounds per square-foot to be used for the design of the structure's foundations.

Project Materials and Strengths

Concrete:

	 a. Foundations b. Slab-on-Grade c. Composite Slab-on-Steel Deck d. Exterior Concrete 	4500 psi 4000 psi 4000 psi 5000 psi
Reinforcing Steel:	ASTM A615, Grade 60 ASTM A185 for Welded Wire Reinforcing	
Structural Steel:	ASTM A992, Grade 50	
Steel Channels: Steel Plates, Bars, Angles, etc.:	ASTM A36 ASTM A36	
Hollow Structural Steel Sections:	ASTM A500, Grade B	
Structural Pipes:	ASTM A53, Grade B or ASTM A501	
High-Strength Bolts:	ASTM A325-N	
Steel Deck:	ASTM A653 (Galvanized Deck)	
Concrete-Masonry Units:	ASTM C90, Grade N, Type I, 2000 psi	
Grout:	ASTM C476, 2500 psi	
Mortar:	ASTM C270, Type S, 1800 psi	

	Northea	st Metropolitan Reg	gional Vocation	al High School	20)19-091	
	Section	`	-	-	Sheet no./rev.		
	MS	MSBA 90% Construction Document Submission					
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20	
Dead and Live Loading Cri	iteria						
Design Dead Loads:							
Typical Floor Loading on Compos	ite Deck:					40 6	
5 ¹ / ₄ " Light-Weight Concrete 2" x 20-Gauge Composite Steel De	eck					42 psf 3 psf	
Mechanical/ Electrical/ Plumbing	UK					10 psf	
Miscellaneous						5 psf	
						∑60 psf	
Typical Roof Loading on Steel De	ck:						
3" x 20-Gauge Type NS or NSA S						3 psf	
Roofing and Insulation						7 psf	
Mechanical/ Electrical/ Plumbing Photovoltaic Panels						10 psf 15 psf	
Miscellaneous						<u> </u>	
					-	∑35 psf	
Deeff ending on Monton's 1D	D. J.,						
Roof Loading on Mechanical Roof 4 "Normal-Weight Concrete	Pads:					67 psf	
3" x 20-Gauge Composite Steel De	eck					3 psf	
Mechanical/ Electrical/ Plumbing						10 psf	
						∑80 psf	
Design Live Loads:							
Classrooms with Partitions				40	psf + 15 psf	Reducible)	
Reading Rooms					60 psf (1	Reducible)	
Corridors (First Floor)						Reducible)	
Corridors (Above First Floor)				1		Reducible)	
Lobbies Assembly/Public Gathering Areas					00 psf (Non-1 00 psf (Non-1		
Stairs					00 psf (Non-1		
Storage (Light)					25 psf (Non-1		
Storage (Mechanical Equipment)				1	50 psf (Non-I	Reducible)	
Roof (Live)					20 psf (Non-1	Reducible)	

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section				Sheet no./rev.	
	MSBA	A 90% Constructi	on Document Sub	omission		6
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Snow Loading Criteria

	[In accordance with ASCE7-10]
Building details	
Roof type;	Flat
Width of roof;	b = 640.00 ft
Ground snow load	
Ground snow load;	$P_{g} = 50.00 \text{ lb/ft}^{2}$
Density of snow (Figure 7-1);	$\gamma = min(0.13 \times P_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 20.50 lb/ft^3$
Terrain typeSect. 26.7;	В
Exposure condition (Table 7-2);	Partially exposed
Exposure factor (Table 7-2);	$C_{e} = 1.00$
Thermal condition (Table 7-3);	All
Thermal factor (Table 7-3);	$C_{t} = 1.00$
Importance category (Table 1.5-1);	III
Importance factor (Table 1.5-2);	$I_s = 1.10$
Min snow load for low slope roofs (Sect 7.3.4);	$P_{f_{min}} = I_s \times 20 \ lb/ft^2 = 22.00 \ lb/ft^2$
Flat roof snow load (Sect 7.3);	$P_{f} = 0.7 \times C_{e} \times C_{t} \times I_{s} \times P_{g} = \textbf{38.50} \text{ lb/ft}^{2}$

	Project .			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section			Sheet no./rev.		
E i D i O	MSBA	A 90% Constructi	on Document Sub	omission		7
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Wind Loading Criteria

Areas A and B

[In accordance with ASCE7-10]

*Using the directional design method

Flat
b = 470.00 ft
d = 200.00 ft
H = 62.00 ft
h = 62.00 ft

General wind load requirements

Basic wind speed;	V = 137.0 mph
Risk category;	III
Velocity pressure exponent coef (Table 26.6-1);	$K_d = 0.85$
Exposure category (cl 26.7.3);	С
Enclosure classification (cl.26.10);	Enclosed buildings
Internal pressure coef +ve (Table 26.11-1);	$GC_{pi_p} = 0.18$
Internal pressure coef -ve (Table 26.11-1);	$GC_{pi_n} = -0.18$
Gust effect factor;	$G_{f} = 0.85$
Minimum design wind loading (cl.27.4.7);	$p_{min_r} = 8 \ lb/ft^2$

Topography

Topography factor not significant;	$K_{zt} = 1.0$
Velocity pressure equation;	$q = 0.00256 \times K_z \times K_{zt} \times K_d \times V^2 \times 1 psf/mph^2;$

Velocity pressures table

z (ft)	K _z (Table 27.3-1)	q _z (psf)
15.00	0.85	34.72
30.00	0.98	40.02
45.00	1.07	43.50
62.00	1.14	46.48

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.); $q_i = 46.48 \text{ psf}$

Pressures and forces

Net pressure;

 $p = q \times G_f \times C_{pe} - q_i \times GC_{pi};$

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section				Sheet no./rev.	
E i D i C	MSBA	A 90% Constructi	on Document Sub	mission		8
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Net force;

 $F_w = p \times A_{ref};$

Roof load case 1 - Wind 0, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (-ve)	62.00	-0.90	46.48	-43.92	14570.00	-639.93
B (-ve)	62.00	-0.90	46.48	-43.92	14570.00	-639.93
C (-ve)	62.00	-0.50	46.48	-28.12	29140.00	-819.38
D (-ve)	62.00	-0.30	46.48	-20.22	35720.00	-722.18
		•	E 2021 4			

Total vertical net force;

 $F_{w,v} = -2821.42 \text{ kips}$ $F_{w,h} = 0.00 \text{ kips}$

Total horizontal net force;

Walls load case 1 - Wind 0, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	15.24	7050.00	107.44
A ₂	30.00	0.80	40.02	18.85	7050.00	132.90
A ₃	45.00	0.80	43.50	21.21	7050.00	149.54
A ₄	62.00	0.80	46.48	23.24	7990.00	185.68
В	62.00	-0.50	46.48	-28.12	29140.00	-819.38
С	62.00	-0.70	46.48	-36.02	12400.00	-446.65
D	62.00	-0.70	46.48	-36.02	12400.00	-446.65

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 29140.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_{r_0}} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = 466.24 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -819.4 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 575.6 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1394.9 \text{ kips}$

Roof load case 2 - Wind 0, GC_{pi} -0.18, -0c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (+ve)	62.00	-0.18	46.48	1.25	14570.00	18.28

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section				Sheet no./rev.	
	MSBA	A 90% Constructi	on Document Sub	omission		9
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	B (+ve)	62.00	-0.18	46.48	1.25	14570.00	18.28
	C (+ve)	62.00	-0.18	46.48	1.25	29140.00	36.57
	D (+ve)	62.00	-0.18	46.48	1.25	35720.00	44.82
Τc	Total vertical net force;			$F_{w,v} = 117.96$ l	cips	•	

Total horizontal net force;

 $F_{w,v} = 117.96 \text{ km}$ $F_{w,h} = 0.00 \text{ kips}$

Walls load case 2 - Wind 0, GC_{pi} -0.18, -0 c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	31.97	7050.00	225.40
A ₂	30.00	0.80	40.02	35.58	7050.00	250.86
A ₃	45.00	0.80	43.50	37.94	7050.00	267.50
A4	62.00	0.80	46.48	39.97	7990.00	319.37
В	62.00	-0.50	46.48	-11.39	29140.00	-331.82
С	62.00	-0.70	46.48	-19.29	12400.00	-239.17
D	62.00	-0.70	46.48	-19.29	12400.00	-239.17

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 29140.00 \ ft^2$
Projected vertical area of roof;	$A_{vert_r_0} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{466.24 kips}$
Leeward net force;	$F_1 = F_{w,wB} = -331.8 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 1063.1 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1394.9 \text{ kips}$

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	A (-ve)	62.00	-0.90	46.48	-43.92	6200.00	-272.31
	B (-ve)	62.00	-0.90	46.48	-43.92	6200.00	-272.31
	C (-ve)	62.00	-0.50	46.48	-28.12	12400.00	-348.67
	D (-ve)	62.00	-0.30	46.48	-20.22	69200.00	-1399.06
Тс	otal vertical net	force;	•	$F_{w,v} = -2292.3$	6 kips		•

Roof load case 3 - Wind 90, GC_{pi} 0.18, - c_{pe}

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section				Sheet no./rev.	
F. D. C	MSBA	A 90% Constructi	on Document Sub	mission		10
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Total horizontal	net force;
------------------	------------

 $F_{w,h} = 0.00 \text{ kips}$

Walls load case 3 - Wind 90, GC_{pi} 0.18, $\mbox{-}c_{pe}$

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	15.24	3000.00	45.72
A ₂	30.00	0.80	40.02	18.85	3000.00	56.55
A ₃	45.00	0.80	43.50	21.21	3000.00	63.63
A ₄	62.00	0.80	46.48	23.24	3400.00	79.01
В	62.00	-0.28	46.48	-19.53	12400.00	-242.13
С	62.00	-0.70	46.48	-36.02	29140.00	-1049.62
D	62.00	-0.70	46.48	-36.02	29140.00	-1049.62

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_{90}} = d \times H = 12400.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_{-}90} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = 198.40 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -242.1 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 244.9 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 487.0 \text{ kips}$

Roof load case 4 - Wind 90, GC_{pi} -0.18, $+c_{pe}$

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	A (+ve)	62.00	-0.18	46.48	1.25	6200.00	7.78
	B (+ve)	62.00	-0.18	46.48	1.25	6200.00	7.78
	C (+ve)	62.00	-0.18	46.48	1.25	12400.00	15.56
	D (+ve)	62.00	-0.18	46.48	1.25	69200.00	86.84
Tot	Total vertical net force;			$F_{w,v} = 117.96 \text{ kips}$			
Total horizontal net force; F_{w}			$F_{w,h} = 0.00 \text{ kip}$	S			

Walls load case 4 - Wind 90, GC_{pi} -0.18, $+c_{pe}$

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A_1	15.00	0.80	34.72	31.97	3000.00	95.92

	Project				Job Ref.	
	Northeast	Metropolitan Reg	ional Vocational	High School	2019	9-091
	Section				Sheet no./rev.	
	MSB	A 90% Constructi	on Document Sub	omission		11
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₂	30.00	0.80	40.02	35.58	3000.00	106.75
A ₃	45.00	0.80	43.50	37.94	3000.00	113.83
A ₄	62.00	0.80	46.48	39.97	3400.00	135.90
В	62.00	-0.28	46.48	-2.79	12400.00	-34.65
С	62.00	-0.70	46.48	-19.29	29140.00	-562.06
D	62.00	-0.70	46.48	-19.29	29140.00	-562.06

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_90} = d \times H = 12400.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_r_90} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = 198.40 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -34.7 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 452.4 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 487.0 \text{ kips}$

Areas C and D

[In accordance with ASCE 7-10]

*Using the directional design method

Building data

Type of roof;	Flat
Length of building;	b = 285.00 ft
Width of building;	d = 200.00 ft
Height to eaves;	H = 82.00 ft
Mean height;	h = 82.00 ft

General wind load requirements

Basic wind speed;	V = 137.0 mph
Risk category;	III
Velocity pressure exponent coef (Table 26.6-1);	$K_{d} = 0.85$
Exposure category (cl 26.7.3);	С
Enclosure classification (cl.26.10);	Enclosed buildings
Internal pressure coef +ve (Table 26.11-1);	$GC_{pi_p} = 0.18$
Internal pressure coef -ve (Table 26.11-1);	$GC_{pi_n} = -0.18$
Gust effect factor;	$G_{f} = 0.85$

	Project				Job Ref.	
	Northeast	Metropolitan Reg	ional Vocational	High School	2019	9-091
	Section				Sheet no./rev.	
	MSB	A 90% Constructi	on Document Sub	omission		12
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Minimum design wind loading (cl.27.4.7); $p_{min r}$

 $p_{\min_r} = \mathbf{8} \ lb/ft^2$

Topography

Topography factor not significant;

Velocity pressure equation;

$$\begin{split} K_{zt} &= 1.0 \\ q &= 0.00256 \times K_z \times K_{zt} \times K_d \times V^2 \times 1 \text{psf/mph}^2; \end{split}$$

Velocity pressures table

z (ft)	K _z (Table 27.3-1)	q _z (psf)
15.00	0.85	34.72
40.00	1.04	42.47
60.00	1.13	46.15
82.00	1.22	49.66

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.); $q_i = 49.66 \text{ psf}$

Pressures and forces

Net pressure;

Net force;

$$\begin{split} p &= q \times G_{f} \times C_{pe} \text{ - } q_{i} \times GC_{pi}\text{;} \\ F_{w} &= p \times A_{ref}\text{;} \end{split}$$

Roof load case 1 - Wind 0, GC_{pi} 0.18, - c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (-ve)	82.00	-0.90	49.66	-46.93	11685.00	-548.40
B (-ve)	82.00	-0.90	49.66	-46.93	11685.00	-548.40
C (-ve)	82.00	-0.50	49.66	-30.05	23370.00	-702.18
D (-ve)	82.00	-0.30	49.66	-21.60	10260.00	-221.65
otal vertical net	force;	•	$F_{w,v} = -2020.6$	2 kips		•

Total vertical net force; Total horizontal net force;

 $F_{w,h} = 0.00 \text{ kips}$

Walls load case 1 - Wind 0, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	14.67	4275.00	62.70
A ₂	40.00	0.80	42.47	19.94	7125.00	142.10
A ₃	60.00	0.80	46.15	22.44	5700.00	127.93
A ₄	82.00	0.80	49.66	24.83	6270.00	155.69
В	82.00	-0.50	49.66	-30.05	23370.00	-702.18

	Project		Project				
	Northeast 1	Metropolitan Reg	2019-091				
	Section		Sheet no./rev.				
	MSBA	A 90% Constructi	13				
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022	

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
С	82.00	-0.70	49.66	-38.49	16400.00	-631.22
D	82.00	-0.70	49.66	-38.49	16400.00	-631.22

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 23370.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_r_0} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = 373.92 \text{ kips}$
Leeward net force;	$F_1 = F_{w,wB} = -702.2 \text{ kips}$
Windward net force;	$F_{w} = F_{w,wA_{1}} + F_{w,wA_{2}} + F_{w,wA_{3}} + F_{w,wA_{4}} = 488.4 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1190.6 \text{ kips}$

Roof load case 2 - Wind 0, GC_{pi} -0.18, -0 c_{pe}

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	A (+ve)	82.00	-0.18	49.66	1.34	11685.00	15.67
	B (+ve)	82.00	-0.18	49.66	1.34	11685.00	15.67
	C (+ve)	82.00	-0.18	49.66	1.34	23370.00	31.34
	D (+ve)	82.00	-0.18	49.66	1.34	10260.00	13.76
Τc	otal vertical net	force;		F _{w,v} = 76.43 ki	ps		•

Total horizontal net force;

 $F_{w,h} = 0.00 \text{ kips}$

Walls load case 2 - Wind 0, GC_{pi} -0.18, -0 c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	32.55	4275.00	139.13
A ₂	40.00	0.80	42.47	37.82	7125.00	269.48
A ₃	60.00	0.80	46.15	40.32	5700.00	229.83
A ₄	82.00	0.80	49.66	42.71	6270.00	267.79
В	82.00	-0.50	49.66	-12.17	23370.00	-284.35
С	82.00	-0.70	49.66	-20.61	16400.00	-338.01
D	82.00	-0.70	49.66	-20.61	16400.00	-338.01

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section				Sheet no./rev.	
	MSBA	14				
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Overall loading

Projected vertical plan area of wall;	$A_{vert_w_0} = b \times H = 23370.00 \text{ ft}^2$
Projected vertical area of roof;	$A_{vert_r_0} = 0.00 ft^2$
Minimum overall horizontal loading;	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{373.92 kips}$
Leeward net force;	$F_1 = F_{w,wB} = -284.4 \text{ kips}$
Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 906.2 \text{ kips}$
Overall horizontal loading;	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1190.6 \text{ kips}$

Roof load case 3 - Wind 90, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (-ve)	82.00	-0.90	49.66	-46.93	8200.00	-384.84
B (-ve)	82.00	-0.90	49.66	-46.93	8200.00	-384.84
C (-ve)	82.00	-0.50	49.66	-30.05	16400.00	-492.76
D (-ve)	82.00	-0.30	49.66	-21.60	24200.00	-522.80

Total vertical net force;

Total horizontal net force;

 $F_{w,v} = -1785.24 \text{ kips}$ $F_{w,h} = 0.00 \text{ kips}$

Walls load case 3 - Wind 90, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	14.67	3000.00	44.00
A ₂	40.00	0.80	42.47	19.94	5000.00	99.72
A ₃	60.00	0.80	46.15	22.44	4000.00	89.77
A ₄	82.00	0.80	49.66	24.83	4400.00	109.26
В	82.00	-0.41	49.66	-26.46	16400.00	-433.91
С	82.00	-0.70	49.66	-38.49	23370.00	-899.49
D	82.00	-0.70	49.66	-38.49	23370.00	-899.49

Overall loading

Projected vertical plan area of wall; Projected vertical area of roof; Minimum overall horizontal loading; Leeward net force;
$$\begin{split} A_{vert_w_90} &= d \times H = \textbf{16400.00} \ ft^2 \\ A_{vert_r_90} &= \textbf{0.00} \ ft^2 \\ F_{w,total_min} &= p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{262.40} \ kips \\ F_1 &= F_{w,wB} = \textbf{-433.9} \ kips \end{split}$$

	Project				Job Ref.	
	Northeast	Metropolitan Reg	2019-091			
	Section	Sheet no./rev.				
F : B : G	MSBA	A 90% Constructi	15			
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Windward net force;	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = 342.8 \text{ kips}$
Overall horizontal loading:	$F_{w \text{ total}} = \max(F_{w} - F_{l} + F_{w \text{ b}}, F_{w \text{ total min}}) = 776.7 \text{ kips}$

Roof load case 4 - Wind 90, GC_{pi} -0.18, +c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A (+ve)	82.00	-0.18	49.66	1.34	8200.00	11.00
B (+ve)	82.00	-0.18	49.66	1.34	8200.00	11.00
C (+ve)	82.00	-0.18	49.66	1.34	16400.00	21.99
D (+ve)	82.00	-0.18	49.66	1.34	24200.00	32.45

Total vertical net force;

Total horizontal net force;

```
F_{w,v} = 76.43 kips
```

```
F_{w,h} = 0.00 \text{ kips}
```

Walls load case 4 - Wind 90, GC_{pi} -0.18, $+c_{pe}$

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	34.72	32.55	3000.00	97.64
A ₂	40.00	0.80	42.47	37.82	5000.00	189.11
A ₃	60.00	0.80	46.15	40.32	4000.00	161.29
A ₄	82.00	0.80	49.66	42.71	4400.00	187.93
В	82.00	-0.41	49.66	-8.58	16400.00	-140.70
С	82.00	-0.70	49.66	-20.61	23370.00	-481.66
D	82.00	-0.70	49.66	-20.61	23370.00	-481.66

Overall loading

Projected vertical plan area of wall; Projected vertical area of roof; Minimum overall horizontal loading; Leeward net force; Windward net force; Overall horizontal loading;
$$\begin{split} A_{vert_w_90} &= d \times H = \textbf{16400.00} \ \text{ft}^2 \\ A_{vert_r_90} &= \textbf{0.00} \ \text{ft}^2 \\ F_{w,total_min} &= p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{262.40} \ \text{kips} \\ F_1 &= F_{w,wB} = \textbf{-140.7} \ \text{kips} \\ F_w &= F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} + F_{w,wA_4} = \textbf{636.0} \ \text{kips} \\ F_{w,total} &= max(F_w - F_1 + F_{w,h}, F_{w,total_min}) = \textbf{776.7} \ \text{kips} \end{split}$$

	Project Northea	st Metropolitan Re	gional Vocation	al High School	Job Ref.	019-091
	Section	1		0	Sheet no./rev.	
	MS	BA 90% Construct	ion Document S	Submission		16
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20
Seismic Loading Calculation	ons					
Areas A and B						
				[In ac	cordance wi	th ASCE 7-
Site parameters						
Site class;		D				
Mapped acceleration parameters (Section 11.4.1)					
at short period;		$S_{S} = 0.25$				
at 1 sec period;		$S_1 = 0.08$				
Site coefficientat short period (Ta	ble 11.4-1);	$F_a = 1.600$				
at 1 sec period (Table 11.4-2);		$F_v = 2.400$				
Spectral response acceleration p	arameters					
at short period (Eq. 11.4-1);		$S_{MS} = F_a \times S_S$	= 0.400			
at 1 sec period (Eq. 11.4-2);		$\mathbf{S}_{\mathrm{M1}} = \mathbf{F}_{\mathrm{v}} \times \mathbf{S}_{\mathrm{1}}$	= 0.192			
Design spectral acceleration par	ameters (Sect	11.4.4)				
at short period (Eq. 11.4-3);		$S_{DS} = 2 / 3 \times 3$	$S_{MS} = 0.267$			
at 1 sec period (Eq. 11.4-4);		$S_{D1} = 2 / 3 \times S_{D1}$	$M_{11} = 0.128$			
Seismic design category						
Risk category (Table 1.5-1);		III				
Seismic design category based on	short period rea	sponse acceleration	on (Table 11.6	-1)		
	-	В				
Seismic design category based on	1 sec period re	sponse acceleration	on (Table 11.6	-2)		
		В				
Seismic design category;		В				
Approximate fundamental perio	d					
Height above base to highest level		$h_n = 62 ft$				
From Table 12.8-2:						
Structure type;		All other syste	ems			
Building period parameter C _t ;		$C_t = 0.02$				
Building period parameter x;		x = 0.75				
Approximate fundamental period	(Ea 12 8-7)·	$T_a = C_t \times (h_n)^x$	\times 1 sec / (1 ft)	= 0.442 sec		
Building fundamental period (Sec		$T_a = C_t + (n_n)$ $T = T_a = 0.442$				
Long-period transition period;	. 12.0.2),	$T = T_a = 0.442$ $T_L = 12 \text{ sec}$				
Seismic response coefficient						
Seismic force-resisting system (Ta	able 12.2-1);	B_BUILDING	G_FRAME_S	YSTEMS		
		3. Ordinary sto	eel concentrica	ally braced frames		

FIV	Project Northea	st Metropolitan Re	gional Vocation	al High School	Job Ref.)19-091	
	Section	BA 90% Construct	ion Document	Submission	Sheet no./rev.	17	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
Engineers besign ereep	AA	07/20/2022	MD	07/27/2022	MD	12/19/2	
Response modification factor (Table	: 12.2-1);	R = 3.25					
Seismic importance factor (Table 1.	5-2);	$I_e = 1.250$					
Seismic response coefficient (Sect 1	2.8.1.1)						
Calculated (Eq 12.8-2);		$C_{s calc} = S_{DS} / c$	$(R / I_e) = 0.102$	26			
Maximum (Eq 12.8-3);		—		$R / I_e)) = 0.1114$			
Minimum (Eq 12.8-5);		-		(e, 0.01) = 0.0147			
Seismic response coefficient;		$C_s = 0.1026$	55				
Seismic base shear (Sect 12.8.1)		3					
Effective seismic weight of the struc	ture	W = 19660.0]	zine				
•	luic,		zība				
Seismic response coefficient;		$C_s = 0.1026$	2016 41-				
Seismic base shear (Eq 12.8-1);		$V = C_s \times W =$	2010.4 kips				
Areas C and D							
				[In ac	cordance wi	th ASCE 7	
Site parameters				·			
Site class;		D					
Mapped acceleration parameters (Se	ction 11.4.1)						
at short period;		$S_{S} = 0.25$					
at 1 sec period;		$S_1 = 0.08$					
Site coefficientat short period (Table	e 11.4-1);	$F_{a} = 1.600$					
at 1 sec period (Table 11.4-2);		$F_v = 2.400$					
Spectral response acceleration par	ameters						
at short period (Eq. 11.4-1);		$S_{MS} = F_a \times S_S$					
at 1 sec period (Eq. 11.4-2);		$S_{M1} = F_v \times S_1$	= 0.192				
Design spectral acceleration para	neters (Sect	11.4.4)					
at short period (Eq. 11.4-3);		$S_{DS} = 2 / 3 \times 3$	$S_{MS} = 0.267$				
at 1 sec period (Eq. 11.4-4);		$S_{D1} = 2 / 3 \times S_{D1}$	$_{M1} = 0.128$				
Seismic design category							
Risk category (Table 1.5-1);		III					
Seismic design category based on sh	ort period re-	sponse acceleratio	on (Table 11 6	-1)			
	- F a 10.	B	(,			
Seismic design category based on 1	sec period re	sponse accelerati	on (Table 11.6	-2)			
		В					
Seismic design category;		В					
Annuarimata fundamental neriad							
Approximate fundamental period							

	Project				Job Ref.			
	Northea	st Metropolitan Reg	ional Vocationa	ll High School	20	19-091		
	Section				Sheet no./rev.			
F. B. C	MS	BA 90% Construction	on Document S	ubmission		18		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	12/19/202		
From Table 12.8-2:								
Structure type;		All other syster	ns					
Building period parameter Ct;		$C_t = 0.02$						
Building period parameter x;		x = 0.75						
Approximate fundamental period ((Eq 12.8-7);	$T_a = C_t \times (h_n)^x$	×□ 1sec / (1ft)) ^x = 0.545 sec				
Building fundamental period (Sect	: 12.8.2);	$T = T_a = 0.545 \text{ sec}$						
Long-period transition period;		$T_L = 12 \text{ sec}$						
Seismic response coefficient								
Seismic force-resisting system (Ta	ble 12.2-1);); B_BUILDING_FRAME_SYSTEMS						
		3. Ordinary stee	el concentrica	lly braced frames				
Response modification factor (Tab	ole 12.2-1);	R = 3.25						
Seismic importance factor (Table	1.5-2);	$I_{c} = 1.250$						
Seismic response coefficient (Sect	12.8.1.1)							
Calculated (Eq 12.8-2);		$C_{s_calc} = S_{DS} / (R / I_e) = 0.1026$						
Maximum (Eq 12.8-3);		$C_{s_{max}} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.0903$						
Minimum (Eq 12.8-5);		$C_{s_{min}} = max(0.044 \times S_{DS} \times I_{e}, 0.01) = 0.0147$						
Seismic response coefficient;	ic response coefficient;			$C_{s} = 0.0903$				
Seismic base shear (Sect 12.8.1)								
Effective seismic weight of the str	ucture;	W = 9390.0 kip)S					
Seismic response coefficient;		$C_{s} = 0.0903$						
			348.2 kips					

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School				2019-091	
	Section				Sheet no./rev.	
E i D i C	MSBA 90% Construction Document Submission				19	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Sample Gravity Analysis and Design Calculations

1. Sample Steel Roof Beam

[In accordance with AISC360-16 using the LRFD method]

Support conditions		
Support A	Vertically restrained	
	Rotationally free	
Support B	Vertically restrained	
	Rotationally free	
Applied loading		
Beam loads	Dead self weight of beam × 1	
	Dead full UDL 0.35 kips/ft	
	Snow full UDL 0.4 kips/ft	
	Roof Live full UDL 0.2 kips/ft	
Load combinations		
Load combination 1 - Full	Support A	$Dead \times 1.20$
		Live × 1.60
		Snow \times 1.60
		Roof Live × 1.60
		Dead \times 1.20
		Live \times 1.60
		Snow \times 1.60
		Roof Live × 1.60
	Support B	$Dead \times 1.20$
		Live \times 1.60
		Snow \times 1.60
		Roof Live × 1.60
Analysis results		
Maximum moment;	M _{max} = 234.3 kips_ft;	$M_{min} = 0$ kips_ft
Maximum shear;	$V_{max} = 26$ kips;	$V_{min} = -26 \text{ kips}$
Deflection;	$\delta_{\max} = 1$ in;	$\delta_{\min} = 0$ in
Maximum reaction at support A;	$R_{A_{max}} = 26$ kips;	$R_{A_{min}} = 26 \text{ kips}$
Unfactored dead load reaction at support A;	$R_{A_Dead} = 7.3 \text{ kips}$	
Unfactored snow load reaction at support A;	$R_{A_Snow} = 7.2 \text{ kips}$	
Unfactored roof live load reaction at support A;	$R_{A_Roof Live} = 3.6 \text{ kips}$	
Maximum reaction at support B;	$R_{B_{max}} = 26$ kips;	$R_{B_{min}} = 26 \text{ kips}$
Unfactored dead load reaction at support B;	$R_{B_{Dead}} = 7.3 \text{ kips}$	
Unfactored snow load reaction at support B;	$R_{B_{Snow}} = 7.2 \text{ kips}$	

	Project Northea	st Metropolitan Re	gional Vocationa	l High School	20)19-091
	Section				Sheet no./rev.	
Engineers Decign Crounty		BA 90% Construct	1		<u> </u>	20
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20
Unfactored roof live load reaction a	at support B;	$R_{B_{Roof Live}} = 3$.6 kips			
Section details						
Section type;		W 24x55 (AIS	SC 15th Edn (v	v15.0))		
ASTM steel designation;		A992				
Steel yield stress;		$F_y = 50 \text{ ksi}$				
Steel tensile stress;		$F_u = 65 \text{ ksi}$				
Modulus of elasticity;		E = 29000 ksi				
Resistance factors						
Resistance factor for tensile yieldin	ıg	$\phi_{ty} = \boldsymbol{0.90}$				
Resistance factor for tensile rupture	e	$\phi_{\rm tr} = 0.75$				
Resistance factor for compression		$\phi_{\rm c}=0.90$				
Resistance factor for flexure		$\phi_b = \boldsymbol{0.90}$				
Lateral bracing						
6		Span 1 has con	ntinuous lateral	bracing		
Classification of sections for local	l buckling - S	ection B4.1				
Classification of flanges in flexure	e - Table B4.1	b (case 10)				
Width to thickness ratio;		$\mathbf{b}_{\mathrm{f}} / (2 \times \mathbf{t}_{\mathrm{f}}) = 6$				
Limiting ratio for compact section;		$\lambda_{\rm pff}{=}0.38\times$				
Limiting ratio for non-compact sect	tion;	$\lambda_{\rm rff} = 1.0 \times \sqrt{[H]}$	$[E / F_y] = 24.08;$	Compact		
Classification of web in flexure -	Table B4.1b ((case 15)				
Width to thickness ratio;		$(d - 2 \times k) / t_w$	= 54.63			
Limiting ratio for compact section;		$\lambda_{pwf} = 3.76 \times \sqrt{[E / F_y]} = 90.55$				
Limiting ratio for non-compact sect	tion;	$\lambda_{\rm rwf} = 5.70 \times \gamma$	$[E / F_y] = 137.$.27; Compact		
				S	ection is com	pact in flex
Design of members for shear - Ch	hapter G					
Required shear strength		$V_r = max(abs($	V _{max}), abs(V _{min}	(h)) = 26.031 kips		
Web area		$A_w = d \times t_w = d$	9.322 in ²			
		$k_v = 5.34$				
Web plate buckling coefficient		~ .				
Web plate buckling coefficient Web shear coefficient - eq G2-3		$C_{v1} = 1$				
			$\times A_{w} \times C_{v1} = 27$	7 9.660 kips		
Web shear coefficient - eq G2-3			$\times \mathbf{A}_{\mathrm{w}} \times \mathbf{C}_{\mathrm{vl}} = 2$	79.660 kips		
Web shear coefficient - eq G2-3 Nominal shear strength – eq G6-1		$V_n = 0.6 \times F_y$		79.660 kips		
Web shear coefficient - eq G2-3 Nominal shear strength – eq G6-1 Resistance factor for shear		$V_n = 0.6 \times F_y$ $\phi_v = 0.90$ $V_c = \phi_v \times V_n =$	251.694 kips	79.660 kips ear strength exce	eds required	shear stren
Web shear coefficient - eq G2-3 Nominal shear strength – eq G6-1 Resistance factor for shear	the major ax	$V_{n} = 0.6 \times F_{y}$ $\phi_{v} = 0.90$ $V_{c} = \phi_{v} \times V_{n} =$ PA	251.694 kips		eds required	shear stren

	Project				Job Ref.	
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section				Sheet no./rev.	
	MSBA	A 90% Constructi	on Document Sub	omission		21
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Yielding - Section F2.1	
Nominal flexural strength for yielding - eq F2-1;	$M_{nyld} = M_p = F_y \times Z_x = $ 558.333 kips_ft
Nominal flexural strength;	$M_n = M_{nyld} = 558.333 \text{ kips_ft}$
Design flexural strength;	$M_c = \phi_b \times M_n = $ 502.500 kips_ft
	PASS - Design flexural strength exceeds required flexural strength

Design of members for vertical deflection

Consider deflection due to dead, live, snow and roof live loads

Limiting deflection;	$\delta_{\text{lim}} = \min(1.5 \text{ in}, L_{s1} / 360) = 1.2 \text{ in}$
Maximum deflection span 1;	$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.97$ in
	PASS - Maximum deflection does not exceed deflection limit

2. Sample Composite Steel Floor Beam

[In accordance with AISC 360-16 using the load and resistance factor design method]

Design summary

Overall design status;	Pass
Overall design utilisation;	0.847

Description	Unit	Provided	Required	Utilization	Result
Moment, constr	(kip_ft)	502.5	157.8	0.314	PASS
Shear, constr	(kips)	251.69	17.53	0.070	PASS
Moment, comp	(kip_ft)	786.81	387.17	0.492	PASS
Shear, comp	(kips)	251.69	43.02	0.171	PASS
Deflection, constr	(in)	1.5	0.72	0.479	PASS
Deflection, comp	(in)	1.5	1.27	0.847	PASS

Basic dimensions

Beam span;	L = 36.000 ft			
Beam spacing on one side;	b ₁ = 10.000 ft			
Beam spacing on other side;	b ₂ = 10.000 ft			
Deck orientation;	Deck ribs perpendicular to beam			
Profiles are assumed to meet all dimensional criteria in AISC 360-16				
Overall depth of slab;	t = 5.250 in			
Height of ribs;	$h_r = 2.000$ in			
Centers of ribs;	$rib_{ccs} = 12.000$ in			
Average width of rib;	$w_r = 7.000$ in			

FNC	Project Northeast	Metropolitan Re	gional Vocation	al High School	Job Ref.	019-091		
	Section			Sheet no./rev.				
Engineers Design Group Inc.	MSBA 90% Construction Document Submission Calc. by Date Chk'd by Date				A and hy	22 Date		
zinginoono oosigin onoop	AA	07/20/2022	Chk'd by MD	07/27/2022	App'd by MD	12/19/20		
Material properties								
Concrete								
Specified compressive strength of o	concrete;	f' _c = 4.00 ksi						
Wet density of concrete;		$w_{cw} = 125 \text{ lb/f}$						
Dry density of concrete;		$w_{cd} = 115 \text{ lb/ft}$						
Modulus of elasticity of concrete; Steel		$E_{c} = w_{cd}^{1.5} \times \sqrt{2}$	$(\mathbf{f}_{c}^{*} \times 1 \text{ ksi}) / (1)$	$1 \text{ lb/ft}^3)^{1.5} = 2466 \text{ l}^3$	ksi			
Specified minimum yield stress of	steel;	$F_y = 50 \text{ ksi}$						
Modulus of elasticity of steel;		E _s = 29000 ks	i					
Loading – secondary beam								
Weight of slab construction stage;		$w_{slab_constr} = [t - $	$-h_r \times (1 - w_r / 1 - w_$	$(rib_{ccs})] \times w_{cw} = 4$	6.007 psf			
Weight of slab composite stage;		$w_{slab_comp} = [t - $	$-h_{\rm r} \times (1 - w_{\rm r})/$	rib_{ccs})] × w_{cd} = 42	2.326 psf			
Weight of steel deck;		$w_{deck} = 3.000 \text{ psf}$						
Additional dead load;		$w_{d add} = 0.000 \text{ psf}$						
Weight of steel beam;		$w_{beam_s} = 55.000 \text{ lb/ft}$						
Weight of construction live load;		$w_{constr} = 20.000 \text{ psf}$						
Superimposed dead load;		$w_{serv} = 15.000 \text{ psf}$						
Weight of wall parallel to span;		$W_{w par} = 0.000 \text{ lb/ft}$						
Weight of wall perpendicular to sp	an;	$w_{w_{perp}} = 0.000 \text{ lb/ft}$; assumed to be at mid-span.						
Floor live load;		$w_{imp} = 100.000 \text{ psf}$						
Lightweight partition load;		$w_{part} = 0.000 \text{ psf}$						
Total construction stage dead load;		$w_{constr_D} = [(w_{slab_constr} + w_{deck} + w_{d_add}) \times ((b_1 + b_2)/2)] + w_{beam_s} = 545.069 \text{ lb/f}$						
Total construction stage live load;		$w_{constr_L} = w_{constr} \times (b_1 + b_2) / 2 = 200.000 \text{ lb/ft}$						
Total composite stage dead load(ex lb/ft	ccluding walls);	; $w_{comp_D} = [(w_{slab_comp} + w_{deck} + w_{d_add} + w_{serv}) \times (b_1 + b_2)/2] + w_{beam_s} = 658.264$						
Total composite stage live load;		$w_{comp_L} = (w_{imp} + w_{part}) \times (b_1 + b_2)/2 = 1000.000 \text{ lb/ft};$						
Design forces – secondary beam								
Max ultimate moment at constructi	ion stage;	$M_{constr_u} = (1.2 \times w_{constr_D} + 1.6 \times w_{constr_L}) \times L^2/8 = 157.801 \text{ kips_ft}$						
Max ultimate shear at construction	stage;	$V_{constr_u} = (1.2 \times w_{constr_u} + 1.6 \times w_{constr_u}) \times L / 2 = 17.534 \text{ kips}$						
Maximum ultimate moment at com	•	_ `		/		-		
$M_{\text{comp u}} = (1.2 \times w_{\text{comp D}} + 1.6 \times w)$	1 0	$1.2 \times W_{w par} \times 1$	$L^{2}/8 + 1.2 \times w$	$w_{\text{perp}} \times (b_1 + b_2)/2$	× L/4= 387.	166 kips ft		
Maximum ultimate shear at compo		_r		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
$V_{comp_u} = (1.2 \times W_{comp_D} + 1.6 \times W_{comp_u})$	-	$1.2 \times w_{w par} \times I$	$2 / 2 + 1.2 \times w$	w perp × $(b_1 + b_2)/2$	× 1/2= 43.01	9 kips		
Point of max. B.M. from nearest su		$L_{BM_near} = L/2$		/		-		
Steel section check								
Trial steel section;		W24X55						
Plastic modulus of steel section;		$Z_x = 134.00$ in	3					
Elastic modulus of steel section;		$S_x = 114.00$ in	3					
Width to thickness ratio;		$\lambda_{\rm f} = b_{\rm f} / (2 \times t)$	_f) = 6.941					

	Project Northeas	st Metropolitan Re	gional Vocation	al High School	Job Ref.	019-091	
	Section	Section					
				Submission		23	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20	
Limiting width to thickness ratio	(compact);	$\lambda_{\rm pf} = 0.38 \times \sqrt{6}$	$(E_{\rm s} / F_{\rm y}) = 9.15$	52			
Limiting width to thickness ratio	(noncompact);	$\lambda_{\rm rf} = \sqrt{(E_{\rm S} / F_{\rm y})}$) = 24.083				
					Fla	inge is comp	
Depth to thickness ratio (h/t_w) ;		$\lambda_{\rm w} = 54.600$					
Limiting depth to thickness ratio	compact);	$\lambda_{\rm pw} = 3.76 \times \sqrt{6}$	$(E_{\rm S} / F_{\rm y}) = 90.5$	553			
Limiting depth to thickness ratio (noncompact);	$\lambda_{\rm rw} = 5.70 \times \sqrt{10}$	$E_{\rm S} / F_{\rm y}) = 137.2$	274			
					i	Web is comp	
Strength check at construction	stage for flexur	e					
Check for flexure							
Plastic moment for steel section;		$M_p = F_y \times Z_x =$	= 558.333 kip_	ft			
Resistance factor for flexure;		$\phi_b = 0.90$					
Design flexural strength of steel s	ection alone;	$M_{constr_n} = \phi_b >$	$M_{\rm p} = 502.500$) kip_ft			
Required flexural strength;		$M_{\text{constr} u} = 157$.801 kip_ft				
			PASS	- Beam bending a	t constructio	n stage load	
Strength check at construction	stage for shear						
Web area;	lor shear	$A_w = d \times t_w =$	9.322 in ²				
Web plate buckling coefficient;		$k_v = 5.34$					
Depth to thickness ratio (h/t_w) ;		$\lambda_{\rm w} = 54.600$					
Web shear coefficient;		$C_{v1} = 1.00$					
Resistant factor for shear;		$\phi_{\rm v} = 0.9$					
Design shear strength;		$V_{\text{constr} n} = \phi_{\text{v}} \times (0.6 \times F_{\text{v}} \times A_{\text{w}} \times C_{\text{vl}}) = 251.694 \text{ kips}$					
Required shear strength;		$V_{\text{constr} u} = 17.534 \text{ kips}$					
require chemica englis,		PASS - Beam shear at construction stage loadin					
Design of steel anchors							
Note - for non-uniform stud layou	ts a higher conc	entration of stud	s should be loo	cated towards the	ends of the be	eam	
Effective slab width of composite	section;	b = min(L/8, b)	$(L/8) + \min(L/8)$	$(b_2/2) = 108.000$	in		
Effective area of concrete flange;		$A_c = b \times (t - h)$	$(r) = 351.00 \text{ in}^2$	2			
Diameter of stud anchor;		dia = 0.750 in	, 				
Length of stud anchor after weld;		H _s = 3.50 in					
Specified tensile strength of stud	anchor;	$F_u = 65$ ksi					
Cross section area of one stud and		$A_{sa} = \pi \times dia^2$	$/4 = 0.442 \text{ in}^2$				
Maximum diameter permitted;		$dia_{max} = 2.5 \times t_f = 1.263$ in					
<u> </u>				ISS - Diameter of	stud anchor	provided is	
Point of max. B.M. from nearest s	support;	$L_{BM_{near}} = 18.0$	00 ft				
No. of ribs from points of zero to	max moment;	$rib_{numbers} = interventering$	(L _{BM_near} /rib _{ccs}	- 1) = 17			
No. of ribs with 1 stud per rib;		$N_{r1} = 17$					
No. of ribs with 2 studs per rib;		$N_{r2} = 0$					
No. of ribs with 3 studs per rib;		$N_{r3} = 0$					
Total number of studs;		$N_{prov} = N_{r1} + 2$	$2 \times N_{22} + 3 \times N_{22}$	= 17			

	Project			Project Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019	9-091	
	Section				Sheet no./rev.	
	MSBA	A 90% Constructi	on Document Sub	omission		24
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Group effect factor for 1 stud per rib;	$R_{g1} = 1.00$
Group effect factor for 2 studs per rib;	$R_{g2} = 0.85$
Group effect factor for 3 studs per rib;	$R_{g3} = 0.70$
Value of e_{mid-ht} is less than 2 in (51 mm)	
Position effect factor for deck perpendicular;	$R_{p} = 0.60$
Nom. strength of one stud with 1 stud per rib;	$Q_{n1} = min(0.5 \times A_{sa} \times \sqrt{(f'_c \times E_c)} , R_{g1} \times R_p \times A_{sa} \times F_u) = 17.230 \text{ kips}$
Nom. strength of one stud with 2 studs per rib;	$Q_{n2} = min(0.5 \times A_{sa} \times \sqrt{(f'_c \times E_c)} , R_{g2} \times R_p \times A_{sa} \times F_u) = \textbf{14.645} \text{ kips}$
Nom. strength of one stud with 3 studs per rib;	$Q_{n3} = min(0.5 \times A_{sa} \times \sqrt{(f'_c \times E_c)}$, $R_{g3} \times R_p \times A_{sa} \times F_u$) = 12.061 kips
Total strength of provided steel anchors;	$S_{sc} = N_{r1} \times Q_{n1} + 2 \times N_{r2} \times Q_{n2} + 3 \times N_{r3} \times Q_{n3} = 292.90$ kips
Resistance of concrete flange;	$C_{cf} = 0.85 \times f_{c}^{*} \times A_{c} = 1193.400 \text{ kips}$
Resistance of steel beam;	$T_{sb} = A \times F_y = 810.000 \text{ kips}$
Beam/slab interface shear force;	$C = min(C_{cf}, T_{sb}) = 810.000 kips$
Strength of studs is less than ma	ximum interface shear force therefore partial composite action takes place
Strength check at partial composite action	
Actual net tensile force ;	$V_{\rm h} = C = $ 810.000 kips
Assuming plastic neutral axis at the bottom of the s	steel beam flange.
Resultant compressive force at flange bottom;	$P_{yf} = b_f \times t_f \times F_y = 177.003$ kips
Net force at steel and concrete interface;	$C_{net} = T_{sb} - 2 \times P_{yf} = 455.995 \text{ kips}$
	PNA is in the web of the I Section
Shear connection force;	$\mathbf{F}_{\text{shear}} = \mathbf{S}_{\text{sc}} = 292.90 \text{ kips}$
Total depth of concrete at full stress;	$d_{c} = F_{shear} / (0.85 \times f_{c}^{*} \times b) = 0.798$ in
Depth of compression from top of the steel flange;	$t' = A / (2 \times t_w) - b_f \times t_f / t_w - 0.85 \times f'_c / F_y \times b \times d_c / (2 \times t_w) + t_f = 4.634 \text{ in}$
Tension	
Bottom flange component;	$F_{bf} = F_y \times b_f \times t_f = 177.003 \text{ kips}$
Moment capacity of bottom flange;	$M_{bf} = F_{bf} \times (d - (t_f/2) - t') = 276.030 \text{ kip}_ft$
Web component;	$F_{web_t} = F_y \times (A - (2 \times b_f \times t_f) - (t' - t_f) \times t_w) = 374.450 \text{ kips}$
Moment capacity of web;	$M_{web_t} = F_{web_t} \times (d - t' - t_f)/2 = 288.032 \text{ kip_ft}$
Compression	
Web component;	$F_{web_c} = F_y \times (t'-t_f) \times t_w = 81.545 \text{ kips}$
Moment capacity of web;	$M_{web_c} = F_{web_c} \times (t' - t_f)/2 = 14.029 \text{ kip_ft}$
Top flange component;	$F_{tf} = F_y \times b_f \times t_f = 177.003 \text{ kips}$
Moment capacity of top flange;	$M_{tf} = F_{tf} \times (t' - t_{f}/2) = 64.626 \text{ kip}_{ft}$
Concrete flange component;	$F_{cf} = 0.85 \times f_{c}^{*} \times b \times d_{c} = 292.904 \text{ kips}$
Moment capacity of concrete flange;	$M_{cf} = F_{cf} \times (t - d_c/2 + t') = 231.518 \text{ kip_ft}$
Design flexural strength of beam;	$M_{comp_n} = \phi_b \times (M_{bf} + M_{wcb_t} + M_{wcb_c} + M_{tf} + M_{cf}) = 786.811 \text{ kip_ft}$
Required flexural strength;	$M_{comp_u} = 387.166 \text{ kip_ft}$
	PASS - Beam bending at partial composite stage
Check for shear	
Design shear strength;	$V_{comp_n} = V_{constr_n} = 251.694 \text{ kips}$

FINC	Project Northea	st Metropolitan Re	gional Vocation	al High School	Job Ref.	019-091	
	Section	1	0		Sheet no./rev.		
	MS	MSBA 90% Construction Document Submission				25	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20	
Required shear strength;		$V_{comp_u} = 43.0$	19 kips				
			PASS - I	Beam shear at par	tial composii	te stage load	
Check for deflection (Commenta	ry section I3.1)						
Calculation of immediate construct	•	ection;					
Deflection due to dead load;	C		$v_{constr D} \times L^4$ /	$(384 \times E_{\rm S} \times I_{\rm x}) = 0$	0.5262 in		
Amount of beam camber;		$\Delta_{\text{camber}} = 0.000$	—	×			
				an the constructio	n stage dead	load deflect	
Deflection due to construction live	e load;			\times E _s \times I _x) = 0.193	0	9	
Net total construction stage deflec		$\Delta_{\text{short}} = \Delta_{\text{short D}}$	-				
For short term loading:-	,	anon →short_D					
Short term modular ratio;		$n_{s} = E_{s} / E_{c} = 1$	11.8				
Depth of neutral axis from top of	concrete:						
$y_{s} = [b \times (t-h_{r})/n_{s} \times (t-h_{r})/2 + A \times (t-h_{r})/2 + A$)/n + A]					
$\mathbf{y}_{s} = \begin{bmatrix} 0 & (\mathbf{e} \ \mathbf{n}_{r}) & \mathbf{n}_{s} \end{bmatrix} \begin{pmatrix} \mathbf{e} \ \mathbf{n}_{r} \end{pmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{pmatrix} \mathbf{e} \ \mathbf{e} \end{bmatrix}$		$y_s = 7.051$ in					
Moment of inertia of fully composite	site section:	y _s 7.031 m					
$I_s = I_x + A \times (d/2 + t - y_s)^2 + b \times (t - h_t)^2$		$(t - h)/n \times (y - h)$	$(t_h)/2)^2$				
$\mathbf{I}_{\mathrm{S}} = \mathbf{I}_{\mathrm{X}} + \mathbf{A}^{\mathrm{A}} \left(\mathbf{U}/2 + \mathbf{U}^{\mathrm{S}} \mathbf{y}_{\mathrm{S}} \right) + \mathbf{U}^{\mathrm{A}} \left(\mathbf{U} - \mathbf{H}_{\mathrm{I}} \right)$	$(12^{12})^{+}$ 0 [×]	$I_s = 3875 \text{ in}^4$	(t-m _r)/2)				
Effective mt of inertia for partially	composite	5	$I + \sqrt{F}$	(1 - 1) = .21	51 2. in4		
Proportion of live load which is sh	-	$I_{s_{eff}} = 0.75 \times [I_x + \sqrt{(F_{shear} / C)} \times (I_s - I_x)] = ;2151.2; in^4$ $r_{L_s} = 67 \%$					
Deflection due to short term live l		$\Delta_{L_s} = 5 \times r_{L_s} \times w_{comp \ L} \times L^4 / (384 \times E_s \times I_{s \ eff}) = 0.4059 \text{ in}$					
	Jad;	$\Delta_{L_s} - \Im \wedge \Gamma_{L_s}$	$\times W_{comp_L} \wedge L$	$^{\circ}$ (364 $^{\circ}$ E _S $^{\circ}$ I _{s_et}	f) – 0.4059 II	1	
For long term loading:-	of short torm	r — 50 %					
Long term concrete modulus as %	of short term;	_					
Long term modular ratio;		$n_l = E_S / (E_c \times r_{E_l}) = 23.5$					
Depth of neutral axis from top of	-						
$y_l = [b \times (t-h_r)/n_l \times (t-h_r)/2 + A \times (t+h_r)/2 + A \times (t+$	$d/2)] / [b \times (t-h_r)]$	-					
		$y_1 = 9.653$ in					
Moment of inertia of fully composition							
$I_l = I_x + A \times (d/2 + t - y_l)^2 + b \times (t - h_r)^2$	$(12 \times n_l) + b \times$		$(h_r)/2)^2$				
		$I_1 = 3212 \text{ in}^4$	1				
Effective mt of inertia for partially	1	-		$C) \times (I_1 - I_x)] = 185$	5 2.1 in ⁴		
Proportion of live load which is lo	-	$r_{L_{l}} = 1 - r_{L_{s}} =$					
Deflection due to long term live lo	oad;		1 =	$/(384 \times E_S \times I_{l_eff})$			
Dead load due to parallel wall & s	uperimp. dead;	$w_{D_part} = w_{w_part}$	$_{r} + (w_{serv} \times (b_{1} +$	$(b_2)/2) = 150.000$	00 lb/ft		
Long term deflection due to super	imposed dead le	oad (after concret	te has cured):-				
Wall parallel to span and superim	posed dead;	$\Delta_4 = 5 \times (w_{D_pa})$	$L^{4} / (384)$	$\times E_{\rm S} \times I_{\rm l_{eff}}) = 0.1$	055 in		
Wall perpendicular to span;	$\Delta_5 = (w_{w_perp} \times (b_1 + b_2) / 2) \times L^3 / (48 \times E_S \times I_{l_eff}) = 0.0000$ in						
Combined deflections							
Net total construction stage deflect	tion;	$\Delta_{\text{short}} = \Delta_{\text{short}_D}$					
Net total long term deflection;		$\Lambda_{1} = \Lambda_{1}$	$+ \Lambda_{I_{1}} + \Lambda_{I_{1}}$	+ Δ_4 + Δ_5 - Δ_{camber}	= 1.270 in		

	Project Jo						
	Northeast Metropolitan Regional Vocational High School			Northeast Metropolitan Regional Vocational High School 2019-091			9-091
	Section				Sheet no./rev.		
E i D i C	MSBA	A 90% Constructi	on Document Sub	mission		26	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022	

Combined short and long term live load deflectn;	$\Delta_{\text{live}} = \Delta_{\text{L}_s} + \Delta_{\text{L}_l} = 0.638 \text{ in}$
Net long term dead and super imposed dead defln;	$\Delta_{\text{dead}} = \Delta_{\text{short}_D} + \Delta_4 + \Delta_5 - \Delta_{\text{camber}} = 0.632$ in
Post composite deflection;	$\Delta_{\text{comp}} = \Delta_{\text{L}_s} + \Delta_{\text{L}_l} + \Delta_4 + \Delta_5 = 0.744 \text{ in}$
Allowable max deflection;	$\Delta_{\text{Allow}} = 1.500 \text{ in}$

PASS - Deflection less than allowable

Arrangement of steel anchor

Note - for non-uniform stud layouts a higher concentration of studs should be located towards the ends of the beam;

3. Sample Steel Column

[In accordance with	AISC360-10 and th	e LRFD method]
---------------------	-------------------	----------------

Column and loading details

Column details	
Column section;	HSS 12x12x3/8
Design loading	
Required axial strength;	$P_r = 250$ kips; (Compression)
Moment about x axis at end 1;	$M_{x1} = 0.0$ kips_ft
Moment about x axis at end 2;	$M_{x2} = 0.0 \text{ kips_ft}$
Maximum moment about x axis;	$M_x = max(abs(M_{x1}), abs(M_{x2})) = 0.0 kips_ft$
Moment about y axis at end 1;	$M_{y1} = 0.0 \text{ kips_ft}$
Moment about y axis at end 2;	$M_{y2} = 0.0$ kips_ft
Maximum moment about y axis;	$M_y = max(abs(M_{y1}), abs(M_{y2})) = 0.0 kips_ft$
Maximum shear force parallel to y axis;	$V_{ry} = 0.0$ kips
Maximum shear force parallel to x axis;	$V_{rx} = 0.0$ kips
Material details	
Steel grade;	A500 Gr. C
Yield strength;	$F_y = 50$ ksi
Ultimate strength;	$F_u = 62$ ksi
Modulus of elasticity;	E = 29000 ksi
Shear modulus of elasticity;	G = 11200 ksi
Unbraced lengths	
For buckling about x axis;	$L_x = 240$ in
For buckling about y axis;	$L_y = 240$ in
For torsional buckling;	$L_z = 240$ in

FINC	Project Northeast	Metropolitan Re	gional Vocation	al High School	Job Ref.	019-091
LAJ	Section					
Engineers Design Group		A 90% Construct				27
Engineers Design Group Inc.	Calc. by AA	Date 07/20/2022	Chk'd by MD	Date 07/27/2022	App'd by MD	Date 12/19/20
Effective length factors						
For buckling about x axis;		$K_x = 1.00$				
For buckling about y axis;		$K_y = 1.00$				
For torsional buckling;		$K_z = 1.00$				
Section classification						
Section classification for local bu	ckling (cl. B4)					
Critical flange width;		$b = b_f - 3 \times t =$	10.953 in			
Critical web width;		$h = d - 3 \times t =$	10.953 in			
Width to thickness ratio of flange (compression);	$\lambda_{f_c} = b / t = 3$	1.384			
Width to thickness ratio of web (co	mpression);	$\lambda_{w_c} = h \ / \ t = 3$	1.384			
Width to thickness ratio of flange (major flexure);	$\lambda_{f_fx} = b \ / \ t = 3$	1.384			
Width to thickness ratio of web (m	ajor flexure);	$\lambda_{w_{fx}} = h / t = 3$	31.384			
Width to thickness ratio of flange (minor flexure);	$\lambda_{f_fy} = h \ / \ t = 3$	1.384			
Width to thickness ratio of web (m	inor flexure);	$\lambda_{w_{fy}} = b / t = 3$	31.384			
Compression						
Limit for nonslender section;		$\lambda_{r_c} = 1.40 \times \sqrt{10}$	$(E / F_y) = 33.7$			
				The section is	nonslender	in compress
<u>Slenderness</u>						
Member slenderness						
Slenderness ratio about x axis;		$SR_x = K_x \times L_x$	$/ r_x = 50.7$			
Slenderness ratio about y axis;		$SR_y = K_y \times L_y$	$/ r_y = 50.7$			
Reduction factor for slender elem	<u>nents</u>					
Reduction factor for slender elen	nents (E7)					
		therefore:-				
Reduction factor for slender elen		therefore:- $Q = 1.0$				
Reduction factor for slender elen The section does not contain any sl						
Reduction factor for slender elen The section does not contain any sl Slender element reduction factor;	lender elements					
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; Compressive strength	lender elements		$((SR_x)^2 = 111.)$	2 ksi		
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; <u>Compressive strength</u> Flexural buckling about x axis (c	lender elements	Q = 1.0		2 ksi		
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; Compressive strength Flexural buckling about x axis (c Elastic critical buckling stress;	lender elements I. E3)	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$	0			
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; <u>Compressive strength</u> Flexural buckling about x axis (c Elastic critical buckling stress; Reduction factor;	lender elements I. E3) is;	Q = 1.0 $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$	0 658 ^{Qx×Fy/Fex}) ×			
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; Compressive strength Flexural buckling about x axis (c Elastic critical buckling stress; Reduction factor; Flexural buckling stress about x ax	lender elements I. E3) is;	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$ $F_{crx} = Q_x \times (0.00)$	0 658 ^{Qx×Fy/Fex}) ×			
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; Compressive strength Flexural buckling about x axis (c Elastic critical buckling stress; Reduction factor; Flexural buckling stress about x ax Nominal flexural buckling strength	lender elements I. E3) is;	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$ $F_{crx} = Q_x \times (0.00)$	0 658 ^{Qx×Fy/Fex}) × = 662.7 kips	F _y = 41.4 ksi		
Reduction factor for slender elem The section does not contain any sl Slender element reduction factor; Compressive strength Flexural buckling about x axis (c Elastic critical buckling stress; Reduction factor; Flexural buckling stress about x ax Nominal flexural buckling strength Flexural buckling about y axis (c	lender elements I. E3) is;	$Q = 1.0$ $F_{ex} = (\pi^2 \times E)$ $Q_x = Q = 1.00$ $F_{crx} = Q_x \times (0.0)$ $P_{nx} = F_{crx} \times A_g$	0 658 ^{Qx×Fy/Fex}) × = 662.7 kips / (SR _y) ² = 111.	F _y = 41.4 ksi		

	Project				Job Ref.		
	Northeast Metropolitan Regional Vocational High School				2019-091		
	Section				Sheet no./rev.		
E i D i G	MSBA	MSBA 90% Construction Document Submission				28	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022	

Nominal flexural buckling strength;

 $P_{ny} = F_{cry} \times A_g = 662.7$ kips

Design compressive strength (cl.E1)

Resistance factor for compression; Design compressive strength;
$$\label{eq:phi} \begin{split} \varphi_c &= \textbf{0.90} \\ P_c &= \varphi_c \times min(P_{nxs},P_{ny}) = \textbf{596.5} \text{ kips} \end{split}$$

PASS - The design compressive strength exceeds the required compressive strength

4. Sample Isolated Reinforced Concrete Column Footing

Footing Analysis

[In accordance with ACI318-19]

Summary results

Density of concrete;

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	243.4			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	3.803	4	0.951	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	173.7	487.6	0.356	Pass
Moment, positive, y-direction	kip_ft	173.7	466.3	0.372	Pass
Shear, one-way, x-direction	kips	52.9	104.8	0.505	Pass
Shear, one-way, y-direction	kips	52.9	101.8	0.520	Pass
Shear, two-way, Col 1	psi	73.546	189.737	0.388	Pass
Min.area of reinf, bot., x-direction	in ²	4.147	5.400		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	11.1		Pass
Min.area of reinf, bot., y-direction	in ²	4.147	5.400		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	11.1		Pass
Pad footing details	I				
Length of footing;	$L_x = 8$	ß ft			
Width of footing;	$L_y = 8$	B ft			
Footing area;	A = L	$u_x \times L_y = 64 \text{ ft}^2$			
Depth of footing;	h = 24	i in			
Depth of soil over footing;	$h_{soil} =$	18 in			

 $\gamma_{conc}=150.0~lb/ft^3$

LIV	Project Northea	ast Metropolitan Reg	gional Vocation	al High School	Job Ref.)19-091			
	Section	-	Sheet no./rev.						
Engineers Design Crown		SBA 90% Construct	29						
Engineers Design Group Inc.	Calc. by AA	Date 07/20/2022	Chk'd by MD	Date 07/27/2022	App'd by MD	Date 12/19/202			
	AA	07/20/2022	MD	0//2//2022	MD	12/19/202			
Column no.1 details									
Length of column;		$l_{x1} = 16.00$ in							
Width of column;		$l_{y1} = 16.00$ in							
position in x-axis;		$x_1 = 48.00$ in							
position in y-axis;		$y_1 = 48.00$ in							
Soil Properties									
Gross allowable bearing pressure;		$q_{allow_Gross} = 4$	ksf;						
Density of soil;		$\gamma_{soil} = 120.0$ lb	/ft ³						
Angle of internal friction;		$\phi_b = 30.0 \text{ deg}$							
Design base friction angle;		$\delta_{bb} = 30.0 \text{ deg}$							
Coefficient of base friction;	$\tan(\delta_{bb}) = 0.577$								
Design wall friction angle;		$\delta_b = 15.0 \text{ deg}$							
Passive pressure coefficient (Could	omb);	$K_{P} = \sin(90 - \delta_{b}))$		δ_b) × [1 - $\sqrt{\sin(\phi_b)}$	$(\phi + \delta_b) \times \sin(\phi)$	$(\sin(90 + \sin(90 +$			
Dead surcharge load;		$F_{Dsur} = 25 \text{ psf}$							
Live surcharge load;		$F_{Lsur} = 100 \text{ psf}$							
Self weight;		$F_{\rm swt} = h \times \gamma_{\rm conc}$	$F_{swt} = h \times \gamma_{conc} = 300 \text{ psf}$						
Soil weight;		$F_{soil} = h_{soil} \times \gamma_s$	$v_{\rm soil} = 180 \; \mathrm{psf}$						
Column no.1 loads									
Dead load in z;		F _{Dz1} = 75.0 kip)S						
Live load in z;		$F_{Lz1} = 100.0 \text{ kips}$							
Snow load in z;		F _{Sz1} = 75.0 kip	S						
Footing analysis for soil and stab	ility								
Load combinations per ASCE 7-	10								
1.0D (0.419)									
1.0D + 1.0L (0.835)									
1.0D + 1.0S (0.712)									
1.0D + 0.75L + 0.75S (0.951)									
Combination 7 results: 1.0D + 0.7	75L + 0.75S								
Forces on footing									

L IVC	Project Northea	ast Metropolitan Re	gional Vocation	al High School	Job Ref.)19-091		
D . E E	Section Sheet no./rev.							
	MS	MSBA 90% Construction Document Submission 30						
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	12/19/202		
Moments on footing								
Moment in x-axis, about x is 0;		$M_{dx} = \gamma_D \times (A$	\times (F _{swt} + F _{soil} -	$+ F_{\text{Dsur}}) \times L_x / 2) +$	$\gamma_L \times A \times F_{Ls}$	$_{ur} \times L_x / 2 + \gamma$		
		$\times (F_{Dz1} \times x_1) +$	$\gamma_{L} \times (F_{Lz1} \times x)$	$_{1}) + \gamma_{S} \times (F_{Sz1} \times x_{1})$) = 973.5 kip	_ft		
Moment in y-axis, about y is 0;		$M_{dy} = \gamma_D \times (A$	\times (F _{swt} + F _{soil} -	+ F_{Dsur}) × L_y / 2) +	$\gamma_L \times A \times F_{Ls}$	$_{\rm ur} imes L_y / 2 + \gamma$		
		$\times (F_{Dz1} \times y_1) +$	$\gamma_L \times (F_{Lz1} \times y)$	$(r_1) + \gamma_S \times (F_{Sz1} \times y_1)$) = 973.5 kip	_ft		
Uplift verification								
Vertical force;		F _{dz} = 243.37 k	ips					
				PASS - Fo	oting is not s	subject to upl		
Bearing resistance								
Eccentricity of base reaction								
Eccentricity of base reaction in x-	axis;	$e_{dx} = M_{dx} / F_{dz}$	- $L_x / 2 = 0$ in					
Eccentricity of base reaction in y-	axis;	$e_{dy} = M_{dy} / F_{dz}$	- $L_y / 2 = 0$ in					
Pad base pressures								
		$\mathbf{q}_1 = \mathbf{F}_{dz} \times (1 - \mathbf{I}_{dz})$	$6 \times e_{dx} / L_x - 6$	$1 \times e_{dy} / L_y) / (L_x \times$	$L_y) = 3.803$ l	csf		
		$q_2 = F_{dz} \times (1 - $	$6 \times e_{dx} / L_x + 6$	$6 \times e_{dy} / L_y) / (L_x \times$	L_y) = 3.803	ksf		
		$q_3 = F_{dz} \times (1 +$	$6 \times e_{dx} / L_x - 6$	$6 \times e_{dy} / L_y) / (L_x \times$	L_y) = 3.803	ksf		
		$q_4 = F_{dz} \times (1 +$	$6 \times e_{dx} / L_x +$	$6 \times e_{dy} / L_y) / (L_x > 1)$	$(L_y) = 3.803$	ksf		
Minimum base pressure;		$q_{\min} = \min(q_1, q_2, q_3, q_4) = $ 3.803 ksf						
Maximum base pressure;		$q_{\max} = \max(q_1,$	$(q_2,q_3,q_4) = 3.8$	03 ksf				
Allowable Bearing Capacity								
Allowable bearing capacity;		$q_{allow} = q_{allow_G}$	$r_{ross} = 4 \text{ ksf}$					
		$q_{max} / q_{allow} = 0$).951					
		PASS	5 - Allowable b	earing capacity e.	xceeds design	n base pressu		
Footing Design								
				[In ac	cordance wi	th ACI318-1		
Material details								
Compressive strength of concrete;		f' _c = 4000 psi						
Yield strength of reinforcement;		$f_y = 60000 \text{ psi}$						
Compression-controlled strain lim	it (21.2.2);	$\boldsymbol{\epsilon}_{ty} = \boldsymbol{0.00200}$						
Cover to top of footing;		$c_{nom_t} = 3$ in						
Cover to side of footing;		$c_{nom_s} = 3$ in						
Cover to bottom of footing;		$c_{nom_b} = 3$ in						
Concrete type;		Normal weigh $\lambda = 1.00$	t					
Concrete modification factor;		$\lambda = 1.00$						
Column type;		Concrete						

	roject Northe	ast Metropolitan Reg	gional Vocation	al High School	Job Ref.)19-091		
s	ection		-		Sheet no./rev.			
Engineers Design Croup		MSBA 90% Construction Document Submission						
Engineers Design Group Inc.	alc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	12/19/202		
Analysis and design of concrete foot	ting							
Load combinations per ASCE 7-10								
1.4D (0.212)								
1.2D + 1.6L + 0.5Lr (0.520)								
Combination 2 results: 1.2D + 1.6L	+ 0.5Lr							
Forces on footing								
Ultimate force in z-axis;		$F_{uz} = \gamma_D \times A \times$	$(F_{swt} + F_{soil} +$	F_{Dsur}) + $\gamma_L \times A \times F$	$T_{Lsur} + \gamma_D \times F_I$	$D_{z1} + \gamma_L \times F_L$		
		= 299.0 kips		, , , , , , , , , , , , , , , , , , ,	·	·		
Moments on footing		-						
Ultimate moment in x-axis, about x is	0;	$M_{ux} = \gamma_D \times (A$	\times (F _{swt} + F _{soil} -	$+ F_{\text{Dsur}}) \times L_x / 2) +$	$\gamma_L \times A \times F_{Ls}$	$_{\rm ur} \times L_{\rm x} / 2 + $		
		$\times (\mathbf{F}_{\mathrm{Dz1}} \times \mathbf{x}_{1}) +$	$\gamma_L \times (F_{Lz1} \times x)$	₁) = 1196.1 kip_ft				
Ultimate moment in y-axis, about y is	0;	$M_{uy} = \gamma_D \times (A$	\times (F _{swt} + F _{soil} -	$+ F_{\text{Dsur}}) \times L_y / 2) +$	$\gamma_L \times \mathbf{A} \times F_{Ls}$	$_{\rm ur} \times L_{\rm y} / 2 + $		
	$\times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) = 1196.1 \text{ kip_ft}$							
Eccentricity of base reaction								
Eccentricity of base reaction in x-axis	;	$\mathbf{e}_{ux} = \mathbf{M}_{ux} / \mathbf{F}_{uz}$ - $\mathbf{L}_x / 2 = 0$ in						
Eccentricity of base reaction in y-axis	;	$e_{uy} = M_{uy} / F_{uz}$	- $L_y / 2 = 0$ in					
Pad base pressures								
		$q_{u1} = F_{uz} \times (1 - 1)$	$-6 \times e_{ux} / L_x -$	$6 \times e_{uy} / L_y) / (L_x \times$	$L_y) = 4.672$	ksf		
		$q_{u2} = F_{uz} \times (1 - 1)$	$-6 \times e_{ux} / L_x +$	$6 \times e_{uy} / L_y) / (L_x > 1)$	$(L_y) = 4.672$	ksf		
		$q_{u3} = F_{uz} \times (1 - $	+ 6 × e_{ux} / L_x -	$6 \times e_{uy} / L_y) / (L_x > $	$(L_y) = 4.672$	ksf		
		$q_{u4} = F_{uz} \times (1 - $	$+6 \times e_{ux} / L_x +$	$-6 \times e_{uy} / L_y) / (L_x$	\times L _y) = 4.67 2	2 ksf		
Minimum ultimate base pressure;		$q_{\text{umin}} = \min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 4.672 \text{ ksf}$						
Maximum ultimate base pressure;		$q_{umax} = max(q_u)$	$_{u1}, q_{u2}, q_{u3}, q_{u4}) =$	= 4.672 ksf				
Moment design, x direction, positive	e moment							
Ultimate bending moment;		$M_{u.x.max} = 173.$. 679 kip_ft					
Tension reinforcement provided;		9 No.7 bottom		c/c)				
Area of tension reinforcement provide	ed;	$A_{sx.bot.prov} = 5.4$	1 in ²					
Minimum area of reinforcement (8.6.1	1.1);	$A_{s.min} = 0.0018$	$8 \times L_y \times h = 4.$	147 in ²				
			PASS - Area	of reinforcement	provided exc	eeds minim		
Maximum spacing of reinforcement (8	8.7.2.2);	$s_{max} = min(2 \times$	h, 18 in) = 18	in				
			-	reinforcement space	cing exceeds	actual space		
Depth to tension reinforcement;		$\mathbf{d} = \mathbf{h} - \mathbf{c}_{\mathrm{nom}_b} - \mathbf{c}_{\mathrm{nom}_b$						
Depth of compression block;		1	$< f_y / (0.85 \times f)$	$_{c} \times L_{y}) = 0.993$ in				
Neutral axis factor;		$\beta_1 = 0.85$	1.60 '					
Depth to neutral axis;		$\mathbf{c} = \mathbf{a} / \beta_1 = 1.$		0.4002				
Strain in tensile reinforcement;		$\varepsilon_t = 0.003 \times d$.04982				
Minimum tensile strain(8.3.3.1);		$\varepsilon_{\rm min} = \varepsilon_{\rm ty} + 0.0$	0.00500 = 0.00500					

	Project	ast Metropolitan Reg	rional Vocational	High School	Job Ref.	019-091
	Section	ast Metropolitan Reg	Sheet no./rev.	519-091		
		SBA 90% Construct	ion Document Su	bmission	Sheet no.rev.	32
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2
Nominal moment capacity;		$M_n = A_{sx.bot.prov}$	$f_{\rm v} \times f_{\rm v} \times (d - a / 2)$	2) = 541.787 kip	ft	
Flexural strength reduction factor;			· ·	$\epsilon_{\rm t} - \epsilon_{\rm ty}) / (0.003), 0$		0.900
Design moment capacity;			= 487.608 kip_	-		
		$M_{u.x.max} / \phi M_n$		_		
		-		nent capacity exc	ceeds ultima	te moment
One-way shear design, x direction						
Ultimate shear force;		$V_{u.x} = 52.918$ k	cips			
Depth to reinforcement;		$d_v = h - c_{nom b}$	$-\phi_{\rm x.bot}/2 = 20.5$	562 in		
Size effect factor (22.5.5.1.3);		$\lambda_s = 1$				
Ratio of longitudinal reinforcement;		$\rho_w = A_{sx.bot.prov}$	$/(L_y \Box d_v) = 0.$	00274		
Shear strength reduction factor;		$\phi_{\rm v}=0.75$				
Nominal shear capacity (Eq. 22.5.5.)	l);	$V_n = \min(8 \times \lambda)$	$\lambda_{\rm s} imes \lambda imes (ho_{\rm w})^{1/3} imes$	$\sqrt{(\mathbf{f}_{c} \times 1 \text{ psi}) \times \mathbf{I}}$	$L_y \times d_v, 5 \times \lambda$	$L \times \sqrt{\mathbf{f}_{c} \times 1}$
		\times L _y \times d _v) = 13	89.685 kips			
Design shear capacity;		$\phi V_n = \phi_v \times V_n$	= 104.764 kips			
		$V_{u.x} / \phi V_n = 0.4$	505			
			The Design	n shear capacity		
Moment design, y direction, positi	ve moment					
Ultimate bending moment;		$M_{u.y.max} = 173.$				
Tension reinforcement provided;			bars (11.1 in c/	(c)		
Area of tension reinforcement provid		$A_{sy.bot.prov} = 5.4$				
Minimum area of reinforcement (8.6	.1.1);	$A_{s.min} = 0.0018$	$K \times L_x \times h = 4.1$		muchidad an	aada minin
Maximum spacing of reinforcement	(8722)	$s = min(2 \times$	PASS - Area of h, 18 in) = 18 i	of reinforcement	proviaea exc	ceeas minin
Waxinium spacing of remotechent		PASS - Maximum			cing exceeds	actual spa
Depth to tension reinforcement;		$d = h - c_{nom b} - c_{nom b}$	$\phi_{x.bot} - \phi_{y.bot} / 2$	= 19.687 in	0	-
Depth of compression block;		—		$(\times L_x) = 0.993$ in		
Neutral axis factor;		$\beta_1 = 0.85$,		
Depth to neutral axis;		$c = a / \beta_1 = 1.1$	168 in			
Strain in tensile reinforcement;		-	c - 0.003 = 0.0	4757		
Minimum tensile strain(8.3.3.1);		$\varepsilon_{\rm min} = \varepsilon_{\rm ty} + 0.00$				
		-min Sty 010		5 - Tensile strain	exceeds min	imum requ
Nominal moment capacity;		$M_n = A_{sy.bot.prov}$	$x \times f_y \times (d - a / 2)$	2) = 518.162 kip_	ft	
Flexural strength reduction factor;		$\phi_{\rm f} = \min(\max($	$0.65 + 0.25 \times (a$	$\epsilon_{\rm t} - \epsilon_{\rm ty}) / (0.003),$	0.65), 0.9) =	0.900
Design moment capacity;			= 466.346 kip_	-		
		$M_{u.y.max} / \phi M_n$	= 0.372			
		•		nent capacity exc	ceeds ultima	te moment
One-way shear design, y direction						

DDA	Project	t Metropolitan Reg	ional Vocationa	1 High School	Job Ref.	19-091		
	Section		Sheet no./rev.	17-071				
		BA 90% Construction	on Document S	ubmission	Sheet Howley.	33		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20		
Depth to reinforcement;		$d_v = h - c_{nom b} - $	$\phi_{x.bot}$ - $\phi_{y.bot}$ /	2 = 19.687 in				
Size effect factor (22.5.5.1.3);		$\lambda_s = 1$	-					
Ratio of longitudinal reinforcemen	t;	$\rho_w = A_{sy.bot.prov} /$	$(L_x \times d_v) = 0.$	00286				
Shear strength reduction factor;		$\phi_{\rm v}=0.75$						
Nominal shear capacity (Eq. 22.5.5	5.1);	$V_n = min(8 \times \lambda)$	$_{\rm s} imes \lambda imes (ho_{\rm w})^{1/3}$	$\times \sqrt{(\mathbf{f}_{c} \times 1 \text{ psi})} \times 1$	$L_x \times d_v, 5 \times \lambda$	$\times \sqrt{\mathbf{f}_{c} \times 1}$		
		\times L _x \times d _v) = 135	5.694 kips					
Design shear capacity;		$\phi \mathbf{V}_n = \phi_v \times \mathbf{V}_n =$	= 101.77 kips					
		$V_{u.y} / \phi V_n = 0.5$						
			PASS - Desig	n shear capacity	exceeds ultim	ate shear l		
Two-way shear design at column	1							
Depth to reinforcement;		$d_{v2} = 20.125$ in						
Shear perimeter length (22.6.4);		$l_{xp} = 36.125$ in $l_{xp} = 36.125$ in						
Shear perimeter width (22.6.4);		$l_{yp} = 36.125$ in						
Shear perimeter (22.6.4);				$d_{v2} = 144.500$ in	1			
Shear area;		$\mathbf{A}_{\mathbf{p}} = \mathbf{l}_{\mathbf{x}, \mathbf{perim}} \times \mathbf{l}_{\mathbf{y}}$	•					
Surcharge loaded area;		$A_{sur} = A_p - l_{x1} \times$		6 $1n^2$				
Ultimate bearing pressure at center	of shear area;	$ \begin{array}{l} q_{up.avg} = \textbf{4.672} \ ksf \\ F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} + \gamma_D \times A_{sur} \end{array} $						
Ultimate shear load;		-		-		$1 + \gamma_{\rm D} \times A_{\rm su}$		
			-	$A_{p} = 213.877$	kips			
Ultimate shear stress from vertical	2			si) = 73.546 psi				
Column geometry factor (Table 22		$\beta = l_{y1} / l_{x1} = 1.$	UU					
Column location factor (22.6.5.3); Size effect factor (22.5.5.1.3);		$\alpha_s = 40$						
		$\lambda_{\rm s} = 1$						
Concrete shear strength (22.6.5.2);				$\mathbf{f}_{c} \times 1 \text{ psi} = 379.$				
		1 ,		$<\lambda \times \sqrt{(\mathbf{f}_{c} \times 1 \text{ psi})}$) = 478.828 p	S1		
		1	. –	si) = 252.982 psi				
		$v_{cp} = \min(v_{cpa}, v_{cpa})$	$v_{\rm cpb}, v_{\rm cpc}) = 252$.982 ps1				
Shear strength reduction factor;	22	$\phi_{\rm v}=0.75$						
Nominal shear stress capacity (Eq. D_{1}		$v_n = v_{cp} = 252.9$	-					
Design shear stress capacity (8.5.1	.1(d));	$\phi \mathbf{v}_n = \phi_v \times \mathbf{v}_n =$	-					
		$v_{ug} / \phi v_n = 0.38$	ð					

	Project	Project					
	Northeast Metropolitan Regional Vocational High School 2019-091			Northeast Metropolitan Regional Vocational High School			
	Section				Sheet no./rev.		
	MSBA	MSBA 90% Construction Document Submission				34	
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022	

5. Sample Continuous Reinforced Concrete Strip Footing

Footing Analysis

[In accordance with ACI318-19]

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	6.9			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	3.435	4	0.859	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, y-direction	kip_ft	0.6	11.8	0.052	Pass
Min.area of reinf, bot., y-direction	in ²	0.259	0.310		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	12.0		Pass

Strip footing details - considering a one meter strip

Length of footing;	$L_x = 1$ ft
Width of footing;	$L_y = 2$ ft
Footing area;	$A = L_x \times L_y = 2 \ ft^2$
Depth of footing;	h = 12 in
Depth of soil over footing;	$h_{soil} = 3.5$ in
Density of concrete;	$\gamma_{conc}=150.0~lb/ft^3$

Wall no.1 details

Width of wall;	$l_{y1} = 12$ in
position in y-axis;	$y_1 = 12$ in

Soil Properties

Gross allowable bearing pressure;	$q_{allow}_{Gross} = 4 \text{ ksf};$
Density of soil;	$\gamma_{soil}=\textbf{120.0}~lb/ft^3$
Angle of internal friction;	$\phi_b = \textbf{30.0} \text{ deg}$
Design base friction angle;	$\delta_{bb} = 30.0 \text{ deg}$
Coefficient of base friction;	$tan(\delta_{bb}) = \textbf{0.577}$
Self weight; Soil weight;	$\begin{split} F_{swt} &= h \times \gamma_{conc} = \textbf{150} \ psf \\ F_{soil} &= h_{soil} \times \gamma_{soil} = \textbf{35} \ psf \end{split}$

TIM	Project Northea	ast Metropolitan Re	gional Vocation	al High School	Job Ref.)19-091
	Section				Sheet no./rev.	
F. i. D. i. C.	SBA 90% Construction Document Submission			35		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/20
Wall no.1 loads per linear foot						
Dead load in z;		$F_{Dz1} = 2.0 \text{ kips}$				
Live load in z;		$F_{Lz1} = 4.0$ kips				
Snow load in z;		$F_{Sz1} = 2.0 \text{ kips}$				
Footing analysis for soil and stab	oility					
Load combinations per ASCE 7-	10					
1.0D (0.296)						
1.0D + 1.0L (0.796)						
1.0D + 1.0Lr (0.296)						
1.0D + 1.0S(0.546)						
1.0D + 1.0R (0.296) 1.0D + 0.75L + 0.75Lr (0.671)						
1.0D + 0.75L + 0.75S (0.859)						
1.0D + 0.75L + 0.75R (0.671) 1.0D + 0.75L + 0.75R (0.671)						
Combination 7 results: 1.0D + 0.	751 + 0 758					
Forces on footing per linear foot Force in z-axis;		$F_{dr} = \gamma_D \times A \times$	$(F_{aut} + F_{aaii}) +$	$-\gamma_{\rm D} \times F_{\rm Dz1} + \gamma_{\rm L} \times F_{\rm Dz1}$	$F_{L_{a1}} + \gamma_{e} \times F_{e}$	= 6.9 kips
Moments on footing per linear fo	oot		(3wt 301)			1
Moment in y-axis, about y is 0;		$M_{dv} = \gamma_D \times (A$	\times (F _{swt} + F _{soil})	$(\times L_v / 2) + \gamma_D \times (I)$	$F_{Dz1} \times y_1) + \gamma_1$	$L \times (F_{Lz1} \times y)$
		$+ \gamma_S \times (F_{Sz1} \times$	$y_1) = 6.9 \text{ kip}_f$	ft		
Uplift verification						
Vertical force;		F _{dz} = 6.87 kips	2			
,		$\Gamma_{dz} = 0.67 \text{ klps}$	3			
,		$T_{dz} = 0.07 \text{ klps}$	3	PASS - Fo	oting is not s	subject to up
Stability against sliding		r _{dz} – 0.0 7 kip:	3	PASS - Fo	oting is not s	subject to up
		-		PASS - Fo $\tan(\delta_{bb}) = 3.966 \text{ ki}$	0	subject to up
Stability against sliding		-			0	subject to up
Stability against sliding Resistance due to base friction;		-			0	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance	xis;	-	$(F_{dz}, 0 \text{ kN}) \times 1$	$\tan(\delta_{bb}) = 3.966 \text{ ki}$	0	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance Eccentricity of base reaction	uxis;	$F_{RFriction} = max$	$(F_{dz}, 0 \text{ kN}) \times 1$	$\tan(\delta_{bb}) = 3.966 \text{ ki}$	0	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in y-a	uxis;	$F_{RFriction} = max$ $e_{dy} = M_{dy} / F_{dz}$	$F(F_{dz}, 0 \text{ kN}) \times 1$ - L _y / 2 = 0.00	$\tan(\delta_{bb}) = 3.966 \text{ ki}$	ps	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in y-a	xis;	$F_{RFriction} = max$ $e_{dy} = M_{dy} / F_{dz}$ $q_1 = F_{dz} \times (1 - 1)$	$(F_{dz}, 0 \text{ kN}) \times 1$ - $L_y / 2 = 0.00$ $6 \times e_{dy} / L_y) / 0$	tan(δ _{bb}) = 3.966 ki 0 0 in	ps ksf	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in y-a	uxis;	$F_{RFriction} = max$ $e_{dy} = M_{dy} / F_{dz}$ $q_1 = F_{dz} \times (1 - 1)$	$(F_{dz}, 0 \text{ kN}) \times 1$ - $L_y / 2 = 0.00$ $6 \times e_{dy} / L_y) / 6 \times e_{dy} / L_y) / 3$	$tan(\delta_{bb}) = 3.966 ki$ 00 in $(L_y \times 1 \text{ ft}) = 3.435$ $(L_y \times 1 \text{ ft}) = 3.435$	ps ksf	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in y-a Strip base pressures	ıxis;	$F_{RFriction} = max$ $e_{dy} = M_{dy} / F_{dz}$ $q_1 = F_{dz} \times (1 - q_2) = F_{dz} \times (1 - q_2)$	$(F_{dz}, 0 \text{ kN}) \times f$ $- L_y / 2 = 0.00$ $6 \times e_{dy} / L_y) / f$ $6 \times e_{dy} / L_y) / f$ $q_2) = 3.435 \text{ ksf}$	$tan(\delta_{bb}) = 3.966 ki$ 00 in $(L_y \times 1 \text{ ft}) = 3.435$ $(L_y \times 1 \text{ ft}) = 3.435$ f	ps ksf	subject to up
Stability against sliding Resistance due to base friction; Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in y-a Strip base pressures Minimum base pressure;	ıxis;	$F_{RFriction} = \max$ $e_{dy} = M_{dy} / F_{dz}$ $q_1 = F_{dz} \times (1 - q_2) = F_{dz} \times (1 + q_{min}) = \min(q_1, q_2)$	$(F_{dz}, 0 \text{ kN}) \times f$ $- L_y / 2 = 0.00$ $6 \times e_{dy} / L_y) / f$ $6 \times e_{dy} / L_y) / f$ $q_2) = 3.435 \text{ ksf}$	$tan(\delta_{bb}) = 3.966 ki$ 00 in $(L_y \times 1 \text{ ft}) = 3.435$ $(L_y \times 1 \text{ ft}) = 3.435$ f	ps ksf	subject to up
Stability against slidingResistance due to base friction;Bearing resistanceEccentricity of base reactionEccentricity of base reaction in y-aStrip base pressuresMinimum base pressure;Maximum base pressure;	ıxis;	$F_{RFriction} = \max$ $e_{dy} = M_{dy} / F_{dz}$ $q_1 = F_{dz} \times (1 - q_2) = F_{dz} \times (1 + q_{min}) = \min(q_1, q_2)$	$c(F_{dz}, 0 \text{ kN}) \times t$ $- L_y / 2 = 0.00$ $6 \times e_{dy} / L_y) / t$ $6 \times e_{dy} / L_y) / t$ $(q_2) = 3.435 \text{ ksf}$ $(q_2) = 3.435 \text{ ksf}$	$tan(\delta_{bb}) = 3.966 ki$ 00 in $(L_y \times 1 \text{ ft}) = 3.435$ $(L_y \times 1 \text{ ft}) = 3.435$ f	ps ksf	subject to up

	Project			Job Ref.		
	Northeast Metropolitan Regional Vocational High School			2019-091		
	Section				Sheet no./rev.	
E i D i O	MSBA 90% Construction Document Submission			36		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

PASS - Allowable bearing capacity exceeds design base pressure

Footing Design

Material details

[In accordance with ACI318-19]

Compressive strength of concrete;	f' _c = 4000 psi
Yield strength of reinforcement;	$f_y = 60000 \text{ psi}$
Compression-controlled strain limit (21.2.2);	$\epsilon_{ty} = \textbf{0.00200}$
Cover to top of footing;	$\mathbf{c}_{\text{nom}_t} = 3$ in
Cover to side of footing;	$c_{nom_s} = 3$ in
Cover to bottom of footing;	$c_{nom_b} = 3$ in
Concrete type;	Normal weight
Concrete modification factor;	$\lambda = 1.00$
Wall type;	Concrete

Analysis and design of concrete footing

1.4D (0.015) 1.2D + 1.6L + 0.5Lr (0.047) 1.2D + 1.6L + 0.5S (0.052) 1.2D + 1.6L + 0.5R (0.047) 1.2D + 1.0L + 1.6Lr (0.034) 1.2D + 1.0L + 1.6S (0.051) 1.2D + 1.0L + 1.6R (0.034)

Combination 3 results: 1.2D + 1.6L + 0.5S

Forces on footing per linear foot

Ultimate force in z-axis;

Moments on footing per linear foot

Eccentricity of base reaction

Eccentricity of base reaction in y-axis;

Strip base pressures

Minimum ultimate base pressure; Maximum ultimate base pressure;
$$\begin{split} F_{uz} = \gamma_D \times \mathbf{A} \times (F_{swt} + F_{soil}) + \Box_D \times F_{Dz1} + \Box_L \times F_{Lz1} + \Box_S \times F_{Sz1} = \textbf{10.2} \\ kips \end{split}$$

$$\begin{split} M_{uy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ &+ \gamma_S \times (F_{Sz1} \times y_1) = \textbf{10.2 kip_ft} \end{split}$$

 $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0.000$ in

$$\begin{split} q_{u1} &= F_{uz} \times (1 - 6 \times e_{uy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{5.122 ksf} \\ q_{u2} &= F_{uz} \times (1 + 6 \times e_{uy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{5.122 ksf} \\ q_{umin} &= \min(q_{u1}, q_{u2}) = \textbf{5.122 ksf} \\ q_{umax} &= \max(q_{u1}, q_{u2}) = \textbf{5.122 ksf} \end{split}$$

TIM	Project . Northeast Metropolitan Regional Vocational High School			Job Ref. 2019-091		
LAJ				Sheet no./rev. 37		
Engineers Design Group Inc.	Calc. by	Date	Chk'd by	Date	App'd by	Date
	AA	07/20/2022	MD	07/27/2022	MD	12/19/2022

Ultimate bending moment;	$M_{u.y.max} = 0.612 \text{ kip_ft}$
Tension reinforcement provided;	No.5 bars at 12.0 in c/c bottom
Area of tension reinforcement provided;	$A_{sy.bot.prov} = 0.31 \text{ in}^2$
Minimum area of reinforcement (7.6.1.1);	$A_{s.min} = 0.0018 \times L_x \times h = 0.259 \text{ in}^2$
	PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (7.7.2.3);	$s_{max} = min(3 \times h, 18 in) = 18 in$
	PASS - Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement;	$d = h - c_{nom_b} - \phi_{y,bot} / 2 = 8.688$ in
Depth of compression block;	$a = A_{sy.bot,prov} \times f_y / (0.85 \times f_c \times L_x) = 0.456$ in
Neutral axis factor;	$\beta_1 = 0.85$
Depth to neutral axis;	$c = a / \beta_1 = 0.536$ in
Strain in tensile reinforcement;	$\epsilon_t = 0.003 \times d \ / \ c \ - \ 0.003 = 0.04559$
Minimum tensile strain(7.3.3.1);	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.00500$
	PASS - Tensile strain exceeds minimum required
Nominal moment capacity;	$M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 13.112 \text{ kip_ft}$
Flexural strength reduction factor;	$\phi_{f} = \min(\max(0.65 + 0.25 \times (\epsilon_{t} - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$
Design moment capacity;	$\phi M_n = \phi_f \times M_n = 11.801 \text{ kip}_ft$
	$M_{u.y.max}$ / $\phi M_n = 0.052$
	PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

One-way shear design does not apply. Shear failure plane fall outside extents of foundation.